Exercices sur la définition de dérivée – Calcul différentiel

Département de mathématiques – Cégep de Saint-Laurent
201-NYA – Hiver 2019 – Professeur : Yannick Delbecque

Exercices préparatoires

Question 1
Utiliser le triangle de Pascal pour développer les polynômes suivants.

a) \((x+1)^3\) \quad c) \((x+2)^5\) \quad e) \((1-r)^6\)
b) \((x-1)^3\) \quad d) \((x+h)^4\) \quad f) \((2x^2-3)^4\)

Question 2
Mettre au dénominateur commun les fractions algébriques suivante. Simplifier le résultat.

\[
a) \frac{1}{x-2} + \frac{1}{x} \\
b) \frac{x}{x+1} - \frac{x+1}{(x-1)} \\
c) \frac{1}{x-2} + \frac{1}{(x-2)^2} \\
d) \frac{1}{x-2} + \frac{1}{x^2(x-2)} \\
e) \frac{x}{x-2} + \frac{x^2}{(x-1)} \\
f) \frac{x+1}{x-1} + \frac{x+1}{(x+2)^2} \\
g) \frac{1}{x^2-1} + \frac{x+1}{x-1} \\
h) \frac{x}{x^2+1} - \frac{x}{x^2+x+1}
\]

Question 3
Utilisez le conjugué pour éliminer les racines carrées au dénominateur ou au numérateur.

\[
a) \frac{1}{\sqrt{x} - \sqrt{2}} \\
b) \frac{1}{\sqrt{2} - \sqrt{x}} \\
c) \frac{1}{\sqrt{x} - 2} \\
d) \frac{1}{1 - \sqrt{x}} \\
e) \frac{1}{\sqrt{x} + 3} \\
f) \frac{x}{\sqrt{x} - 3} \\
g) \frac{x}{(2x+1)(\sqrt{x}-3)} \\
h) \frac{1}{\sqrt{2x+1} + 1} \\
i) \frac{\sqrt{3x-1} - \sqrt{x}}{2x-1}
\]

Question 4
Évaluer les expressions suivantes sans simplifier.

\[
a) f(2+\Delta x) \text{ si } f(x) = x^2 \\
b) f(1+\Delta x) \text{ si } f(x) = \frac{1}{x} \\
c) f(1+\Delta x) \text{ si } f(x) = x^2 + 2x + 1 \\
d) f(-1+\Delta x) \text{ si } f(x) = \frac{1}{1+x} \\
e) f(3+\Delta x) \text{ si } f(x) = \sqrt{3+x} \\
f) f(2+\Delta x) \text{ si } f(x) = \frac{x+2}{x+1} \\
g) f(x+\Delta x) \text{ si } f(x) = x^3 + 1 \\
h) f(x+\Delta x) \text{ si } f(x) = \frac{1}{x+1}
\]

Taux de variation moyen

Question 5
Déterminer les valeurs suivantes ; simplifier le résultat.

\[
a) \Delta y \text{ si } f(x) = x^2 \text{ et } x \text{ varie de } 0 \text{ à } 5. \\
b) \Delta y \text{ si } f(x) = x^2 \text{ et } x \text{ varie de } -2 \text{ à } 2. \\
c) \Delta y \text{ si } f(x) = x^2 \text{ et } x \text{ varie de } -3 \text{ à } -2. \\
d) \Delta y \text{ si } f(x) = x^3 \text{ et } x \text{ varie de } -2 \text{ à } 3. \\
e) \Delta y \text{ si } f(x) = \frac{1}{x} \text{ et } x \text{ varie de } 1 \text{ à } 3. \\
f) \Delta y \text{ si } f(x) = x^2 \text{ et } x \text{ varie de } 0 \text{ à } \Delta x. \\
g) \Delta y \text{ si } f(x) = x^2 \text{ et } x \text{ varie de } 1 \text{ à } 1 + \Delta x. \\
h) \Delta y \text{ si } f(x) = x^3 \text{ et } x \text{ varie de } -2 \text{ à } -2+\Delta x. \\
i) \Delta y \text{ si } f(x) = \frac{1}{x} \text{ et } x \text{ varie de } 1 \text{ à } 1 + \Delta x. \\
j) \frac{\Delta y}{\Delta x} \text{ si } f(x) = \frac{1}{x} \text{ quand } x \text{ varie de } 1 \text{ à } 3. \\
k) \frac{\Delta y}{\Delta x} \text{ si } f(x) = \frac{1}{x} \text{ quand } x \text{ varie de } 1 \text{ à } 1 + \Delta x. \\
l) \frac{\Delta y}{\Delta x} \text{ si } f(x) = x^2 \text{ quand } x \text{ varie de } x \text{ à } x + \Delta x. \\
m) \frac{\Delta y}{\Delta x} \text{ si } f(x) = x^3 \text{ quand } x \text{ varie de } x \text{ à } x + \Delta x \\
n) \frac{\Delta y}{\Delta x} \text{ si } f(x) = \frac{1}{x} \text{ quand } x \text{ varie de } x \text{ à } x + \Delta x \\
o) \frac{\Delta y}{\Delta x} \text{ si } f(x) = \sqrt{x} \text{ quand } x \text{ varie de } x \text{ à } x + \Delta x
\]

Question 6
Déterminer l’équation de la droite \(y = ax + b\) qui passe par les points donnés. Faire une esquisse représentant la fonction et la droite.

\[
a) (1, f(1)) \text{ et } (2, f(2)) \text{ pour } f(x) = x^2 \\
b) (0, f(0)) \text{ et } (2, f(2)) \text{ pour } f(x) = x^3 \\
c) (1, f(1)) \text{ et } (2, f(2)) \text{ pour } f(x) = \frac{1}{x} \\
d) (1, f(1)) \text{ et } (2, f(2)) \text{ pour } f(x) = \sqrt{x} \\
e) (0, f(0)) \text{ et } (\Delta x, f(\Delta x)) \text{ pour } f(x) = x^3 \\
f) (1, f(1)) \text{ et } (1 + \Delta x, f(1 + \Delta x)) \text{ pour } f(x) = x^2
\]

Question 7
Montrer que l’équation de la droite qui passe par les points \((a, f(a))\) et \((a + \Delta x, f(a + \Delta x))\) du graphe d’une fonction \(f\) est

\[y = f(a) + \frac{\Delta y}{\Delta x}(x-a)\]

Faire une esquisse représentant la situation.
Après la chute de météorites survenue sur la ville de Tcheliabinsk, déterminer à l’aide des résultats de la question précédente vers quel nombre semble s’approcher le taux de variation de $y = x^3$ entre 2 et 2 + Δx lorsque Δ devient infiniment petit ?

Soit la fonction $f(x) = x^3 - x$. Calculer les taux de variation moyens suivants en simplifiant les fractions algébriques obtenues. L’identité algébrique suivante pourrait être utile : $A^3 - B^3 = (A - B)(A^2 + AB + B^2)$.

Loi de refroidissement (ou du réchauffement) de Newton : si T est la température d’un objet, la température ambiante et t le temps écoulé, le taux de variation $\frac{\Delta T}{\Delta t}$ de la température par rapport au temps est proportionnel à la différence entre la température de l’objet et la température ambiante :

$$\frac{\Delta T}{\Delta t} = C(T - A)$$

où C est la constante de proportionnalité (qui dépend du système).

Après la chute de météorites survenue sur la ville de Tcheliabinsk en Russie en février 2013, des chercheurs s’apprêtent à récupérer des fragments de la météorite dans la zone sinistrée.

Les chercheurs sont arrivés sur le site à 14 h et ont remarqué que la température d’un fragment était de 140°C. Deux heures plus tard, la température a chuté de 50°C.

Sachant que la température ce jour là était de -10°C et que la météorite a touché le sol à 10 h, déterminer la température du fragment au moment précis où la météorite a touché le sol.

Taux de variation instantané

Déterminer le TVI $\frac{dy}{dt}$ des fonctions suivantes au point donné (sans utiliser les formules de dérivation). Déterminer l’équation de la droite tangente au graphe de f à ce point.

Soit la fonction définie par l’équation $y = x^3$. Calculer le taux de variation moyen $\frac{\Delta y}{\Delta x}$ sur l’intervalle demandé. Donner la valeur de Δx pour chacun des cas

- a) [2, 4] b) [2, 3] c) [2, 2.1] d) [2, 2.01] e) [2, 2.001].

Déterminer laquelle des deux fonctions suivantes croit le plus rapidement en $x = 1$:

- $f(x) = x^2$ ou $f(x) = \frac{1}{x}$.

La fonction donnant l’aire d’un cercle (en centimètres carrés) par rapport à son rayon (en centimètres) est $A(r) = \pi r^2$.

- a) Quelle est la variation de l’aire du cercle si le rayon passe de 2 cm à 4 cm ?
- b) Quelle est le taux de variation moyen de l’aire du cercle si le rayon passe de 2 cm à 4 cm ?
- c) Quelle est le taux de variation instantané de l’aire du cercle lorsque le rayon est de 4 cm ?

Différentielles et fonctions dérivées

Démontrer la fonction dérivée $\frac{dy}{dx}$ à l’aide de la définition.

En utilisant les résultats de la question précédente et le fait que

$$dy = \frac{dy}{dx} dx,$$

déterminer l’erreur absolue sur y pour $x = 2$ et $x = 10$ si l’erreur en x est 0.1. Pour laquelle des deux valeurs de x l’erreur en y est-elle la plus grande ?

Taux de variation instantané

Trouver la dérivée des fonctions suivantes en utilisant la définition.
Question 18
Associer chacune des fonctions suivantes (à gauche) à sa dérivée (à droite).

a)

b)

c)

d)

i)

ii)

iii)

iv)

Question 19
Dans les questions précédentes, on a déterminé que la dérivée de
\(y = x^3 \) est \(y' = 3x^2 \). Utilisez la relation entre \(dy \) et \(dx \)

\[dy = f(x + dx) - f(x) \]

pour approximer \((1.1)^3\). (Ind. décomposer 1.1 en \(x + dx \) avec \(x = 1 \) et \(dx = 0.1 \) pour déterminer \(f(x + dx) = f(x) + dy \).
Solutions

Question 1
a) $x^3 + 3x^2 + 3x + 1.$
b) $x^3 - 3x^2 - 3x - 1.$
c) $x^3 + 10x^4 + 40x^3 + 80x^2 + 80x + 32.$
d) $x^4 + 4x^3 + 6x^2h^2 + 4xh^2 + h^4.$
e) $h^6 - 6h^4 + 15h^2 - 20h^2 + 15h^2 - 6 + 1.$
f) $16x^8 - 96x^6 + 216x^5 - 216x^4 + 81.$

Question 2
a) $2(x - 1) \overline{x(x - 2)}$
b) $-3x + 1 \overline{(x - 1)(x + 1)}$
c) $(x - 2)^2 \overline{(x - 2)^2}$
d) $x^2 + 1 \overline{x^2 - 2x}$
e) $x(x^2 - x - 1) \overline{(x - 1)(x - 2)}$
f) $x(x + 1)^2 \overline{(x^2 + 1)(x + 1)}$
g) $x^2 + 2x + 2 \overline{(x - 1)(x + 1)}$
h) $x^2 \overline{(x^2 + 1)(x^2 + 1)}$
i) $x^2 \overline{x^2 - 2x}.$

Question 3
a) $\sqrt{a + \sqrt{a}} \overline{x - 2}$
b) $\sqrt{a + \sqrt{a}} \overline{2 - x}$
c) $\sqrt{a + 2} \overline{x - 4}$
d) $1 + \sqrt{a} \overline{x - 3}$
e) $\sqrt{a} \overline{x - 9}.$

Question 4
a) $(a + \Delta x)^2$
b) $\frac{1}{2}$
c) $(1 + \Delta x)^2 + 2(1 + \Delta x) + 1$
d) $\frac{1}{1(1 + \Delta x)}$
e) $\sqrt{a + (3 + \Delta a)}$
f) $\frac{(2 + 2a + h)}{2(2 + 2a + h)}$
g) $(x + \Delta x)^3 + 1$
h) $\frac{(x + \Delta x)^3}{(x + \Delta x)^3 + 1}$

Question 5
a) $\Delta y = 25$
b) $\Delta y = 0$
c) $\Delta y = -5$
d) $\Delta y = 35$
e) $\Delta y = -2/3$
f) $\Delta y = \Delta x^2$
g) $\Delta y = (1 + \Delta x)^2 - 1$
h) $\Delta y = -(2 + \Delta x)^3 - 8$
i) $\Delta y = \frac{1}{1 + \Delta x} - 1$
j) $\Delta y = \frac{1/3 - 1/1}{2} = -\frac{1}{2}$
k) $\Delta y = \frac{1/\sqrt{x} - 1}{\Delta x}$
l) $\Delta y = \frac{(x + \Delta x)^2 - x^2}{\Delta x}$
m) $\Delta y = \frac{(x + \Delta x)^3 - x^3}{\Delta x}$

Question 6
a) $y = 3x - 2$
b) $y = 4x$
c) $y = -\frac{1}{2} x + \frac{1}{2}$
d) $(\sqrt{a} - 1)x - (\sqrt{a} + 2)$
e) $x\Delta x^2$
f) $y = \frac{1 + \Delta x)^2}{\Delta x} x + \left(1 - \frac{(1 + \Delta x)^2}{\Delta x}\right)$

Question 7
On peut faire la démonstration de différentes manières.
Pour que la droite définie par l’équation donnée passe par les deux points donnés. En $(a, f(a))$, on a que

$y = f(a) + \frac{\Delta y}{\Delta x}(x - a)$

$f(a) = f(a) + \frac{\Delta y}{\Delta x}(a - a)$

$f(a) = f(a)$

L’équation de la droite est donc satisfaite en ce point.

Au point $(a + \Delta x, f(a + \Delta x))$, on a que

$y = f(a) + \frac{\Delta y}{\Delta x}(x - a)$

$f(a + \Delta x) = f(a) + \frac{\Delta y}{\Delta x}(a + \Delta x - a)$

$f(a + \Delta x) = f(a) + \frac{\Delta y}{\Delta x}$

$f(a + \Delta x) = f(a) + \Delta y$.

L’équation de la droite est donc aussi satisfaite pour l’autre point. Ainsi, comme la droite passe par les deux points donnés, c’est bien l’équation de la droite cherchée.

Question 8
a) $x^2 - x^2 = 28, \Delta x = 2$
b) $19, \Delta x = 1$
c) $12.61, \Delta x = 0.1$
d) $12.0601, \Delta x = 0.01$
e) $12.006001, \Delta x = 0.001$

Question 9
12

Question 10
a) 27
b) $b^3 - b - (a^3 - a) = b^2 + ab + a^2 - 1$
c) $(x + \Delta x)^3 - (x + \Delta x) - (x^3 - x) = 3x^2 + 3\Delta x x + \Delta x^2 - 1$

Question 11
$\Delta T = C(T - A)$

$\frac{90}{2} = C(140 - (-10))$

$45 = C(150)$

$C = \frac{45}{150} = \frac{3}{10}$

$\Delta T = \frac{3}{10}(T + 10)$

$\Delta T = \frac{3}{10}(T + 10)\Delta t$

$\Delta T = \frac{3}{10}(140 + (10)10(-14))$

$\Delta T = \frac{3}{10}(150)4 = -180$

$\Delta T = T_{fin} - T_{ini}$

$T_{ini} = T_{fin} - \Delta T = 140 - (-180) = 320.$

Question 12
a) $4, y = 4x - 4$
b) $4, y = 4x - 5$
c) $3, y = 12x - 16$
de) $3, y = 3x$
e) $0, y = 2$

f) $\frac{1}{2}, y = -\frac{1}{2} + \frac{1}{2}$
g) $-\frac{1}{2}, y = -\frac{1}{2} + \frac{1}{2}$
h) $2a, y = 2ax - a^2$
i) $3a^2, y = 3a^2 - 2a^2$
j) $-\frac{1}{2}, y = -\frac{1}{2} + \frac{1}{2}$
Question 13

TVI\(_f\)(1) = 2, TVI\(_g\)(1) = 1, la fonction \(f\) croît donc plus rapidement que \(g\) en \(x = 1\).

Question 14

a) 12\(\pi\) cm\(^2\) b) 6\(\pi\) cm c) 8\(\pi\) cm

Question 15

a) \(\frac{dy}{dx} = 4x^3\) d) \(\frac{dy}{dx} = -2x\)
b) \(\frac{dy}{dx} = -\frac{2}{x}\) e) \(\frac{dy}{dx} = 2x + 1\)
c) \(\frac{dy}{dx} = \frac{x+2}{(x+1)^2}\) f) \(\frac{dy}{dx} = \frac{1}{2\sqrt{2x}}\)

d) \(\frac{dy}{dx} = \frac{1}{2\sqrt{x+3}}\)

e) \(\frac{dy}{dx} = 2\sqrt{x+3}\)

Question 16

a) \(|dy| = 3.2 ; |dy| = 400\)
b) \(|dy| = 0.025 ; |dy| = 0.0002\)
c) \(|dy| = 0.089 ; |dy| = 0.0991\)
d) \(|dy| = 0.4 ; |dy| = 2\)
e) \(|dy| = 0.5 ; |dy| = 2.1\)
f) \(|dy| = 0.05 ; |dy| = 0.1667\)

Question 17

a) \(f'(x) = 2x\) b) \(f'(x) = 3x^2\)
c) \(g'(x) = \frac{1}{2\sqrt{x+3}}\) d) \(h'(x) = \frac{2}{(x+5)^2}\)
e) \(7\) f) \(2at + b\)
g) \(-2\) h) \(g'(x) = \frac{-2}{2} + \frac{2}{3x}\)

Question 18

a) i) c) ii) b) iii) d) iv)

Question 19

On a que \(dy = 3x^2\,dx\). Donc si \(x = 1\) et \(dx = 0.1\), on a que
\[dy = 3(1)^2(0.1) = 0.3.\]
Comme \(dy = f(x+dx) - f(x)\), on a que \(f(x+dx) = f(x) + dy\). On utilise cette dernière égalité pour approximer \(f(x+dx)\).
\[f(1,1) = f(1) + 0.1\]
\[\approx f(1) + 0.3\]
\[= f(1)^3 + 0.03\]
\[= 1.03.\]