Exercices de révision

Calcul différentiel – Hiver 2020 – Yannick Delbecque

Notation, logique, nombres

Question 1

Démontrer les énoncés suivants, ou donner un contre exemple pour montrer qu'ils sont faux.

- a) « La somme de deux multiples de 3 est aussi un multiple de 3 ».
- b) « Le cube d'un nombre pair est pair. »
- c) « La somme d'un nombre entier et d'un nombre rationnel est un nombre entier. »
- d) « La somme de deux nombres rationnels est un nombre rationnel»

Question 2

Mettre les nombres périodiques 0.123 et 2.18 sous forme de frac-

Question 3 (Défi difficile)

Démontrer que $\sqrt{3}$ n'est pas un nombre rationnel en utilisant le lemme suivant (qu'il n'est pas nécessaire de prouver) :

n est un multiple de 3 ssi n^2 est un multiple de trois.

Indice: s'inspirer de la preuve vue en classe pour $\sqrt{2}$.

Question 4 (Défi difficile)

Démontrer que $\log_2(3)$ n'est pas un nombre rationnel en utilisant le fait que la décomposition en facteurs premiers est unique. Indice : s'inspirer (un peu moins) de la preuve vue en classe pour $\sqrt{2}$.

Ouestion 5

Effectuer les opérations suivantes.

- a) $\{1, \pi, 2\pi\} \cup \{1, 2, 3, 4\}$
- f) [2,5]\]4,8]
- b) $\{1, \pi, 2\pi, 3\} \cap \{1, 2, 3, 4\}$ g) $\mathbb{N} \cap [0.5, \pi]$
- c) $\{1, \pi, 4, 5\} \setminus \{1, 2, 3, 4\}$
- h) $\mathbb{Q} \cap \{0.5, \pi, 3.14159, e, \sqrt{2}, 3/5\}$
- d) $[2,5] \cup [4,8]$
- i) $\{0.5, \pi, 3.14159, e, \sqrt{2}, 3/5\}\setminus O$
- e) $[2,5] \cap [4,8]$

Ouestion 6

Décrire les ensembles suivants à l'aide d'intervalles

- a) $\{x \mid x \ge -3 \text{ et } x < \pi\}$
- c) $\{x \mid x < 3 \text{ et } 0 < x \text{ et } x \le 1/2\}$
- b) $\{x \mid x-2 < 5\}$
- d) $\{x \mid x^2 < 4\}$

Question 7

Compléter avec $\ll = \gg$ ou $\ll \iff \gg$.

a)
$$2 + 3$$
 5

b)
$$x^2 + 1$$
 $(x-1)(x+1)$

c)
$$x + 2 = 3$$
 $x = 1$

d)
$$(x+1)^2 = 1$$
 $x^2 + 2x + 1 = 1$

- e) $(x+1)^3 \sqrt{x^3+3x^2+3x+1}$
- f) $x^2 = 4$ x = 2 ou x = -2
- g) AB = 0 A = 0 ou B = 0

Exposants

Question 8

Simplifier et réécrire les expressions suivantes pour que le résultat n'ai aucun exposant fractionnaire ou négatif.

- a) 2^{-3}
- b) $2^{1/2}$
- c) $3^{-1/3}$
- d) $5^{-2/3}$
- e) $(2^{1/2})^3$
- g) $2^{1/2}2^{-5/2}$

- h) $\frac{2^{3/2}}{2^{5/2}}$
- j) $\left(\frac{1}{5^{2/3}}\right)^{1/2}$
- k) $\left(2^{1/2} + 3^{1/2}\right)^{-2}$
- 1) $\sqrt{3^2 + 4^2}$
- m) $\left(\left(\sqrt{2}\right)^8\right)^{1/2}$

Ouestion 9

Mettre les expressions suivantes sous la forme

$$C(x-a)^b$$

où a et b et C sont des nombres réels.

- h) $\frac{\sqrt[4]{x+2}}{5}$

- p) $(2x-3)^2$

- r) $(2x-1)^3$ s) $\sqrt{4x-1}$

- g) $\sqrt[3]{x-2}$

Droites

Question 10

Déterminer la pente et l'ordonnée à l'origine des droites suivantes.

- a) La droite d'équation 3x + 2y = 1.
- b) La droite d'équation $\frac{x}{5} + \frac{2y}{3} = 1$.
- c) La droite d'équation y = -3(x-2) + 1
- d) La droite d'équation $\sqrt{2}x + \log_2(3)y = \sqrt{3}$

Question 11

Donner l'équation de la droite...

- a) de pente -5 qui passe par le point (-3,4);
- b) passant par les points (-2,4) et (1,-5);
- c) parallèle à la droite trouvée en a) qui passe par le point (1,-2).

Paraboles

Question 12

Trouver les zéros de chacune des fonctions polynomiales cidessous en factorisant.

a)
$$f(x) = x^2 + 7x + 12$$

c)
$$f(x) = 3x^2 + 5x$$

b)
$$f(x) = 9 - 4x^2$$

d)
$$f(x) = -x^2 - 100$$

Question 13

Utiliser la formule quadratique pour trouver les zéros de chacune des fonctions suivantes.

a)
$$f(x) = -3x^2 + 2x - 6$$

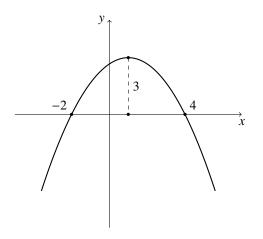
c)
$$f(x) = x^2 + 11$$

b)
$$f(x) = 6x^2 - 17x + 12$$

d)
$$f(x) = 9x^2 - 6x + 1$$

Question 14

Déterminer quelle fonction quadratique de la forme $f(x) = ax^2 + bx + c$ est illustrée dans le graphe suivant.



Question 15

Faire une esquisse des paraboles définie par les équations suivantes.

a)
$$y = x^2 - 2$$

f)
$$y = (x-1)^2$$

b)
$$y = 4 - x^2$$

g)
$$y = (x+1)^2 - 1$$

c)
$$y = (x-1)(x+2)$$

h)
$$y = -(x-1)(x-3)$$

d)
$$y = -(x-2)(x+1)$$

i)
$$v = 1 - (x+1)^2$$

e)
$$y = x(x-3)$$

Polynômes

Question 16

Factoriser complètement les polynômes suivants.

a)
$$4x^3 - 3x^2 + 4x - 3$$

e)
$$x^2 + 25$$

b)
$$x^2 + 5x + 6$$

f)
$$3x^3 - 108x$$

c)
$$9x^2 + 12x + 4$$

g)
$$18x^5 + 32x^3$$

d)
$$16x^2 - 81$$

h)
$$x^4 - 5x^2 + 4$$

Ouestion 17

Trouver les zéros des fonctions polynomiales et rationnelles suivantes.

a)
$$f(x) = 4x - 3$$

d)
$$f(x) = (x-1)(x+1)$$

b)
$$f(x) = 2$$

e)
$$f(x) = x(x-1)(x+\sqrt{2})$$

c)
$$f(x) = 2x^2 - 5x + 2$$

f)
$$f(x) = \frac{(x-2)(x+1)}{x^2+3}$$

Question 18

Effectuer les divisions polynomiales suivantes.

$$a) \frac{x^2 - 1}{x - 1}$$

e)
$$\frac{x^3 - 1}{x^2 - 1}$$

b)
$$\frac{x^2 - 1}{x + 1}$$

f)
$$\frac{x^4 - x^3 - 2x^2 + 3x - 1}{x - 1}$$

c)
$$\frac{x^2+1}{x-1}$$

g)
$$\frac{x^5 + x^4 + 2x^3 + 2x^2 + x + 2}{x + 1}$$

d)
$$\frac{x^3 - 1}{x - 1}$$

Question 19

Factoriser les polynômes suivant à l'aide du théorème de factorisation en utilisant le zéro donné.

a)
$$P(x) = x^3 + x^2 - 2x - 8$$
, $P(2) = 0$.

b)
$$P(x) = x^3 + 4x^2 + 6x + 4$$
, $P(-2) = 0$.

c)
$$P(x) = x^3 - 4x^2 - x + 6$$
, $P(2) = 0$.

d)
$$P(x) = x^4 + x^3 - 8x + 8$$
, $P(-1) = 0$.

Vrai ou faux?

- a) Tous les facteurs d'un polynôme sont de la forme (x-a).
- b) $(x-2)(x^2+x-6)$ un produit de polynômes premiers.

Question 21

Le polynôme $P(x) = x^3 - 4x^2 + 8x - 15$ peut également s'écrire de la manière suivante.

$$P(x) = (x-3)(x^2 - x + 5)$$

- a) Peut-on le factoriser davantage? Expliquer.
- b) Vérifier que x = 3 est un zéro de P(x) dans les deux formes données dans la question.
- c) Trouver, s'il y en a, d'autres valeurs de x pour lesquelles P(x) = 0.

Question 22

Soit le polynôme $P(x) = x^4 - 5x^3 - 8x^2 - 24$.

- a) Sans effectuer de division, dire si (x-2) est un facteur de P(x).
- b) Est-ce que (x+2) divise P(x)?

Ouestion 23

Soit le polynôme $P(x) = x^4 + 3x^2 + 2$.

- a) Ce polynôme a-t-il des zéros?
- b) Existe-t-il une factorisation pour de P(x)?
- c) Cela contredit-il le théorème de factorisation? Expliquer.

Question 24

Soit P(x) un polynôme de degré 5. En supposant que tous les zéros sont différents, déterminer le nombre de zéro que ce polynôme pourrait avoir.

Question 25

Factoriser et simplifier.

a)
$$\frac{(x+1)^4}{x^2+2x+1}$$

b)
$$\frac{x^2 - 4}{x - 2}$$

c)
$$\frac{x^2 + x - 6}{x^2 + 4x + 3}$$

d)
$$(x-2)^3(2x+1)^2+(x-2)^2(2x+1)^3$$

e)
$$(x-1)^9(x+2)^5 + (x-1)^8(x^2+2)^6$$

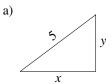
f)
$$\frac{(x-2)^3(x-1)^4 - (x-2)^4(x-1)^3)}{x^2 - x - 2}$$

Fonctions

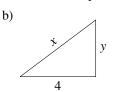
Fonctions et relations

Question 26

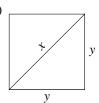
Exprimer algébriquement la variable dépendante en fonction de la variable indépendante en utilisant les relations géométrique déterminée par les figures suivantes. Note : considérez tout les angles en radians et que les longueurs sont positives. Toutes les dimensions autres que indépendante et dépendante sont considérées comme des constantes.



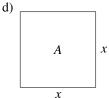
Variable dépendante *y*, variable indépendante *x*.



Variable dépendante *y*, variable indépendante *x*.

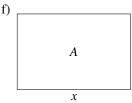


Variable dépendante *y*, variable indépendante *x*.



Variable dépendante x (côté), variable indépendante A (aire).

Variable dépendante *b* (côté), variable indépendante *A* (aire).



Périmètre fixe = 10. Variable dépendante A (aire), variable indépendante b(côté)

Ouestion 27

Substituer (sans simplifier)...

- a) $y \ a x \ dans \ x^2 + 3x + 4$
- b) $y + 1 \ a x \ dans \ x^2 + 3x + 4$
- c) $y + h \ a x \ dans \ x^2 + 3x + 4$
- d) x^2 à x dans $x^2 + 3x + 4$
- e) $x + \Delta x \ a x \ dans \ x^2 + 3x + 4$
- f) $x + \Delta x \ ax \ dans \ \frac{1}{x^2 + 1}$
- g) $x + \Delta x \ a x \ dans \ \frac{1}{(x+1)^2}$

Exercices de révision

Question 28

Déterminer lesquelles des équations suivantes définissent des fonctions si on considère x comme variable indépendante et y comme variable dépendante. Si l'équation donnée défini une fonction, donner la règle de correspondance et son domaine de définition.

a)
$$yx = 1$$

d)
$$x + y^2 = 1$$

d)
$$x + y^2 = 1$$
 g) $2x^2 - y + 8 = 3x$

b)
$$x + y = 1$$

e)
$$x^2 + y = 1$$

g)
$$2x^2 - y + 8 =$$

c)
$$x^2 + y^2 - 1$$

f)
$$v^3 + v^3 - 0$$

b)
$$x+y=1$$
 e) $x^2+y=1$ h) $\frac{1}{y} = \frac{1}{x^2}$

Évaluation de fonction

Ouestion 29

Évaluer...

a)
$$f(3) \sin f(x) = x^3$$

j)
$$f(1)$$
 si $f(x) = x^{5/2}$

b)
$$f(1)$$
 si $f(x) = x^{3/2}$

k)
$$f(x + \Delta x) \text{ si } f(x) = x^{5/2}$$

c)
$$f(9)$$
 si $f(x) = x^{3/2}$

1)
$$f(2) \operatorname{si} f(x) = \log(x-1)$$

d)
$$f(\sqrt[3]{2})$$
 si $f(x) = x^{3/2}$

m)
$$f(0)$$
 si $f(x) = 2^{(x-1)}$

e)
$$f(2)$$
 si $f(x) = 2^{2/3}x^{1/3}$

n)
$$f(-1)$$
 si $f(x) = \frac{1}{x+1}$

f)
$$f(1+h)$$
 si $f(x) = x^2$

o)
$$f(1)$$
 si $f(x) = 2^{(x-1)}$

g)
$$f(3 + \Delta x) \text{ si } f(x) = x^3$$

p)
$$f(x + \Delta x)$$
 si $f(x) = x - 1$

h)
$$f(y) \text{ si } f(x) = \sqrt{x^2 + 1}$$

q)
$$f(x + \Delta x)$$
 si $f(x) = \frac{1}{x^2} - 1$

i)
$$f(y + \Delta x)$$
 si $f(x) = \frac{1}{x}$

r)
$$f(x + \Delta x)$$
 si $f(x) = (x+1)^2 - x$

Ouestion 30

Quelle est la pente de la droite passant par les points correspondants aux valeurs x = 2 et x = 3 du graphe de la fonction $f(x) = x^3$?

Question 31

Quelle est la pente de la droite passant par les points correspondants aux valeurs x = 2 et $x = 2 + \Delta x$ du graphe de la fonction $f(x) = x^2$?

Composition

Question 32

Considérons les fonctions définie par f(x) = 2x, $g(x) = x^2$ et $h(x) = \frac{1}{x+1}$. Évaluer les expressions suivantes.

a)
$$3f(x) - 5$$

d)
$$f(x)g(x)$$

g)
$$[f \circ g \circ h](x)$$

b)
$$f(3x-5)$$

e)
$$f(g(x))$$

h)
$$[h \circ g \circ f](x)$$

c)
$$f(x) + h(x)$$

f)
$$g(f(x))$$

i)
$$[g \circ h \circ f](x)$$

Graphes

Question 33

Soit la fonction définie par $f(x) = x^3 - 4x$.

- a) Donner l'équation de la droite passant par (-1, f(-1)) et (2, f(2))
- b) Vérifier que le point (1, -3) est sur le graphe de f
- c) Donner l'équation de la droite passant par (1, -3) et (2, f(2))

Question 34

Déterminer les points de croisement avec les axes des fonctions suivantes.

a)
$$f(x) = \sqrt{x^2 - 4}$$

d)
$$f(x) = x^4 - 16$$

b)
$$f(x) = (x - 3\sqrt{3})^{2/3}$$

e)
$$f(x) = x^3 + 27$$

c)
$$f(x) = \sqrt{-x^2 + 3x + 4}$$

f)
$$f(x) = 1 + \frac{1}{1 + \frac{1}{x}}$$

Question 35

Faire une esquisse du graphe des fonctions suivantes.

a)
$$f(x) = (x-2)^2 + 1$$

e)
$$f(x) = -(x + \sqrt{3})^2 + 2\sqrt{2}$$

b)
$$f(x) = \frac{1}{x}$$

f)
$$f(x) = \sqrt{x}$$

c)
$$f(x) = -\frac{1}{x-1}$$

g)
$$f(x) = \sqrt{x-1}$$

d)
$$f(x) = \frac{1}{x+2} - 1$$

h)
$$f(x) = \sqrt{x+1} - 1$$

Fonctions inverses

Ouestion 36

Déterminer si les fonctions f et g suivantes sont des fonctions inverses une de l'autre.

a)
$$f(x) = 2x - 3$$
 et $g(x) = \frac{x}{2} + \frac{3}{2}$

b)
$$f(x) = \sqrt[3]{x+1}$$
 et $g(x) = x^3 - 1$

c)
$$f(x) = \frac{2x+1}{3x-2}$$
 et $g(x) = \frac{2x+1}{3x-2}$

Domaine

Question 37 $(4 \times 3 \text{ points})$

Vrai ou faux?

a)
$$\frac{x^2 + x + 1}{(x - 2)(x + 3)}$$
 est défini si et seulement si $x \le -3$ ou $2 \le x$.

b) $\sqrt{x-2}$ est défini si et seulement si $0 \le \sqrt{x-2}$.

Question 38

Déterminer l'ensemble des valeurs de x qui satisfont les inégalités suivantes.

a)
$$x + 3 \le 5$$

f)
$$x + 2 \ge 0$$
 et $2x - 3 \ge 0$

b)
$$1 \le 2x + 3$$

g)
$$x+2 \ge 0$$
 ou $2x-3 \ge 0$

c)
$$x+2 < 0$$

d) $x+3 \le 5$

h)
$$0 \le x^2 - 4$$

i) $0 \le 4 - x^2$

e)
$$\frac{2-3x}{5} \le 4$$

j)
$$0 \le (x-1)(x+2)$$

k)
$$0 \le (x-1)^2 - 1$$

Déterminer le domaine de définition des fonctions suivantes.

a)	f(x)	$= x^{100}$	$+ x^{50}$	+	1

k)
$$f(x) = \sqrt{(x-1)^3}$$

b)
$$f(x) = \frac{1}{2x - 3}$$

1)
$$f(x) = \sqrt{x^2 - 1}$$

c)
$$f(x) = \frac{1}{(x-3)(x+2)}$$

m)
$$f(x) = \sqrt{1 - x^2}$$

n) $f(x) = \sqrt{(x^2 + 1)}$

d)
$$f(x) = \frac{3x-1}{2x+5}$$

o)
$$f(x) = \sqrt{x^2 - 2x - 3}$$

d)
$$f(x) = \frac{3x-1}{2x+5}$$

p)
$$f(x) = \sqrt{x^2 + 2x + 3}$$

e)
$$f(x) = \frac{2}{x^2 - 16}$$

q)
$$f(x) = \frac{-x+2}{x^3-x^2+5x}$$

$$x^2 - 16$$
f) $f(x) = \frac{3}{x^2 - 16}$

q)
$$f(x) = \frac{1}{x^3 - x^2 + 1}$$

f)
$$f(x) = \frac{3}{(x-4)^2}$$

r)
$$f(x) = |x^3 - 1|$$

g)
$$f(x) = \frac{2x^2 - 3x - 5}{x^2 - x - 2}$$

s)
$$f(x) = \frac{1}{|x-1|}$$

g)
$$f(x) = \frac{1}{x^2 - x^2}$$

h) $f(x) = \sqrt{x - 1}$

t)
$$f(x) = \frac{1}{|x| - 1}$$

i)
$$f(x) = \sqrt{x} - 1$$

i) $f(x) = \sqrt{2x-5}$

t)
$$f(x) = \frac{1}{|x| - 1}$$

i)
$$f(x) = \sqrt{2x}$$

$$u) \ f(x) = \frac{1}{\sqrt{x^2 - 4x - 5}}$$

j) $f(x) = \sqrt{x^3}$

Solutions

Question 1

a) Soient a = 3k et b = 3l $(k, l \in \mathbb{Z})$ deux multiples de 3 quelconques. Leur somme est

$$a+b = 3k + 3l = 3(k+l)$$
.

Comme k + l est un nombre entier, 3(k+l) est un multiple de 3.

b) Soit a = 2k (avec k un nombre entier) un nombre pair quelconque. Son cube

$$a^3 = (2k)^3 = 2^3k^3 = 2(2^2k^3),$$

ce qui est aussi un multiple de $2 \operatorname{car} 2^2 k^3 \in \mathbb{Z}$.

- c) Faux. Contre-exemple: la somme de 1 et 1/2 est 3/2, qui n'est pas un nombre entier.
- Soit deux nombre rationnels quelconques $\frac{a}{b}$ et $\frac{c}{d}$ (donc avec a, b, c et d de nombres entiers et $b, d \neq$ 0). Leur somme est

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}.$$

Comme ad + bc et bd sont des sommes et produits de nombres entiers, ces deux nombres sont aussi entiers. De plus, $bd \neq 0$ car b et d sont non-nuls. On peut dont conclure que $\frac{ad+bc}{db}$

est un nombre rationnel.

Question 2

 $x = 0.\overline{123}$.

On multiplie par 1000 pour obtenir

$$1000x = 123.\overline{123}$$
.

En soustrayant 1000x - x, on obtient

$$999x = 123$$

et donc

$$x = \frac{123}{999} = \frac{41}{333}$$
.

Soit

$$y = 2.\overline{18}$$
.

On multiplie par 100 pour obtenir

$$100y = 218.\overline{18}$$
.

En soustrayant 100y - y, on obtient

$$99x = 216$$

et donc

$$x = \frac{216}{99} = 2411.$$

Question 3

Si $\sqrt{3}$ est un nombre rationnel, il peut s'écrire sous la forme d'une fraction simpli-

$$\sqrt{3} = \frac{m}{n}$$
.

En multipliant par n et en prenant le carré, on obtient

$$3n^2=m^2.$$

 m^2 est donc un multiple de trois, et donc m aussi (par le lemme donné). Si m = 3k, on a en substituant 3k à n dans la

dernière équation, on obtient l'égalité

$$3n^2 = 9k^2$$
.

En divisant par 3, on obtient

$$n^2 = 3k^2.$$

Cette fois-ci, n² est un multiple de 3, et donc n est aussi un multiple de 3.

Question 4

Si $log_2(3)$ est une faction, on peut l'écrire comme un fraction déjà simplifiée

$$\log_2(3) = \frac{m}{n}.$$

Par définition des logarithmes, cela est équivalant à dire que

$$3=2^{m/n}.$$

En prenant la puissance n de chaque membre de l'égalité et en simplifiant les exposants avec les propriétés des exposants, on obtient

$$3^n = 2^m$$
.

Comme 2 et 3 sont des nombres premiers et que la décomposition en facteurs premiers est unique, il est impossible qu'une puissance de 2 soit aussi une puissance de 3 (sans quoi on aurait deux décompositions différentes en facteurs premiers pour un même nombre!). L'hypothèse que log₂(3) est rationnel est donc fausse et

$$\log_2(3) \notin \mathbb{Q}$$
.

Question 5

a) $\{1, 2, 3, 4, \pi, 2\pi\}$

b) {1,3}

c)
$$\{\pi, 5\}$$

d) [2,8]

i)
$$\{\pi, e, \sqrt{2}\}$$

Question 8

i) ⁶√2

j) $\frac{1}{\sqrt[3]{5}}$

 $(\sqrt{2} + \sqrt{3})^2$

 $\begin{array}{ll}
\text{non} & \sqrt{3^2} + \\
\sqrt{4^2} & = 3 + \\
\end{array}$

h) $2^{-1} = \frac{1}{2}$ m) 2

Question 6

Question 7

a) 2+3=5

b) $x^2 + 1 = (x-1)(x+1)$

c) $x+2=3 \iff x=1$

d) $(x+1)^2 = 1 \iff x^2 + 2x +$

e) $(x+1)^3 = x^3 + 3x^2 + 3x + 1$

f) $x^2 = 4 \iff x = 2 \text{ ou } x =$

g) $AB = 0 \iff A = 0 \text{ ou } B =$

a) $[-3,\pi[$ c) [0, 1/2]

Ouestion 9

a)
$$x^{-3}$$
 m) $(x-3)^{5/4}$

n) $x^{-3/2}$

c)
$$\frac{2}{3}x^{-5}$$
 o) $\frac{4}{3}x^{-4/5}$

d)
$$(x-3)^{-2}$$
 p) $4(x-3/2)^2$

e)
$$7(x+1)^{-6}$$
 q) $8x^3$

f)
$$x^{1/2}$$
 r) $8(x-1/2)^3$

g)
$$(x-2)^{1/3}$$
 s) $2(x - 1/4)^{-1/2}$

g)
$$(x-2)^{1/3}$$
 s) $2(x + 1/4)^{-1/2}$
h) $\frac{1}{5}(x+2)^{1/4}$ t) $(x-2)^{3/2}$

i)
$$x^{-1/2}$$
 3 $(x+1)^{2/3}$

i)
$$x^{-1/2}$$

i) $2x^{-1/3}$ u) $\frac{3}{4}(x+1)^{2/3}$

k)
$$\frac{2}{3}x^{-1/5}$$
 v) $\frac{2}{5}(x)$

- a) Équation de la droite : y = -3x/2 + 1/2. Pente=-3/2, ordonnée à l'origine = 1/2
- b) Équation de la droite : $y = \frac{3}{10}x + \frac{3}{2}$. Pente=-3/10, ordonnée à l'origine = 3/2
- c) Équation de la droite : y = -3x+7. Pente=-3, ordonnée à l'origine = 7
- d) Équation de la droite : $y = -\frac{\sqrt{2}}{\log_2(3)}x + \frac{\sqrt{3}}{\log_2(3)}.$ Pente= $-\frac{\sqrt{2}}{\log_2(3)}$, ordonnée à l'origine = $\frac{\sqrt{3}}{\log_2(3)}$

Question 11

- a) y = -5x 11
- b) y = -3x 2
- c) y = -5x + 3

Question 12

- a) x = -3 et x = -4
- b) $x = -\frac{3}{2}$ et $x = \frac{3}{2}$
- c) $x = -\frac{5}{3}$ et x = 0
- d) La fonction n'a pas de zéro

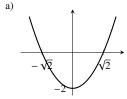
Question 13

- a) La fonction n'a pas de zéro
- b) $x = \frac{4}{3}$ et $x = \frac{3}{2}$
- c) La fonction n'a pas de zéro
- d) $x = \frac{1}{3}$ (zéro double)

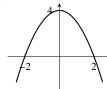
Question 14

$$f(x) = -\frac{1}{3}x^2 + \frac{2}{3}x + \frac{8}{3}$$

Question 15

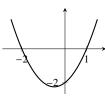


b)



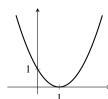
c)

d)

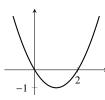


-2 2

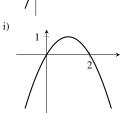
f)



g)



h)



Question 16

- a) $(4x-3)(x^2+1)$
- b) (x+2)(x+3)
- c) $(3x+2)^2$
- d) (4x-9)(4x+9)
- e) $x^2 + 25$
- f) 3x(x-6)(x+6)
- g) $2x^3(9x^2+16)$
- h) (x+2)(x-2)(x+1)(x-1)

Question 17

- a) x = 3/4
- b) aucun zéro
- c) x = 2 et x = 1/2
- d) x = 1 et x = -1
- e) x = 0, x = 1 et $x = -\sqrt{2}$
- f) x = 2 et x = -1

Question 18

- a) x + 1
- b) x 1
- c) x + 1 reste 2
- d) $x^2 + x + 1$
- e) x reste x-1
- f) $x^3 2x + 1$
- g) $x^4 + 2x^2 + 1$ reste 1

Question 19

- a) $P(x) = (x-2)(x^2+3x+4)$. Note: x^2+3x+4 est premier car $\Delta = 3^2-4(1)(4) < 0$.
- b) $P(x) = (x+2)(x^2+2x+2)$. Note: $x^2 + 2x + 2$ est premier car $\Delta = 2^2 - 4(1)(2) < 0$
- c) $P(x) = (x-2)(x^2-2x-3) = (x-2)(x-3)(x+1)$.
- d) $P(x) = (x+1)(x^3-8) =$ $(x+1)(x-2)(x^2+2x+4).$ Note: x^2+2x+4 est premier car $\Delta = 2^2-4(1)(4) <$

Question 20

- a) Faux, car il peut y avoir des facteurs de degré deux de la forme $ax^2 + bc + x$
- b) Faux. $\Delta = 1^1 4(1)(-6) >$

Question 21

- a) Non, car le facteur x² x + 5 n'a pas de zéro : le discriminant Δ = b² 4ac est négatif, il n'y a donc pas de zéros.
- b) Laissé à l'étudiant.
- c) Il n'y en a pas d'autres, d'après la factorisation.

Question 22

- a) (x-2) n'est pas un facteur de P(x)
- b) Oui

Question 23

- a) Chacun des termes de $x^4 + 3x^2 + 2$ consistent en une puissance paire de x avec un facteur positif, les valeurs prises par P(x) sont donc toujours strictement positives. Elle n'admet donc pas de zéros.
- b) Il existe une factorisation: $(x^2 + 1)(x^2 + 2)$. On peut la trouver en posant $y = x^2$ et en factorisant $y^2 + 3y + 2$.
- c) Chacun des facteurs de ce polynôme est irréductible. P(x) n'a donc pas de facteur du premier degré, donc le théorème n'est pas contredit.

Question 24

Comme P(x) se factorise en facteurs de degrés 1 ou 2 par le théorème fondamental de l'algèbre et que le degré du produit de ces facteur est la somme de leur degrés, une factorisation est possible seulement elle correspond à une décomposition de 5 en une somme des nombres 1 et 2. Il y a trois manières de faire une telle décomposition :

$$5 = 1 + 1 + 1 + 1 + 1$$

 $5 = 2 + 1 + 1 + 1$
 $5 = 2 + 2 + 1$

il y a trois factorisation possible Par le théorème de factorisation, chaque zéro distinct correspond à un facteur de degré 1.

P(x) peut donc avoir 1, 3 ou 5 zéros différents.

Question 25

a)
$$\frac{(x+1)^4}{x^2+2x+1} = \frac{(x+1)^4}{(x+1)^2} =$$

- b) $\frac{x^2-4}{x-2} = \frac{(x-2)(x+2)}{x-2} =$
- c) $\frac{x^2 + x 6}{x^2 + 4x + 3}$ $\frac{(x+3)(x-2)}{(x+1)(x+3)} = \frac{x-2}{x+1}$
- d) $(x-2)^2(2x+1)^2((x-2)+$ $(2x+1)) = (x-2)^2(2x+$ $1)^2(3x-1)$
- e) $(x-1)^9(x^2+2)^5 + (x-1)^8(x^2+2)^6 = (x-1)^8(x+2)^5((x-1)+(x^2+2)) = (x-1)^8(x+2)^5(x^2+x+1)$

 $\frac{(x-2)^3(x-1)^4 - (x-2)^4(x-1)^3)}{x^2 - x - 2} = \frac{(x-2)^3(x-1)^3((x-1) - (x-2))}{(x+1)(x-2)} = \frac{(x-2)^2(x-1)^3}{x-1}$

Question 26

- a) $y = \sqrt{25 x^2}$
- b) $y = \sqrt{x^2 16}$
- c) $y = x/\sqrt{2}$
- d) $x = \sqrt{A}$
- e) $h = \frac{A}{b}$
- f) A = x(5-x)

Question 27

- a) $y^2 + 3y + 4$
- b) $(y+1)^2 + 3(y+1) + 4$
- c) $(y+h)^2 + 3(y+h) + 4$
- d) $(x^2)^2 + 3(x) + 4$
- e) $(x + \Delta x)^2 + 3(x + \Delta x) + 4$
- $f) \quad \frac{1}{(x+\Delta x)^2+1}$
- g) $\frac{1}{((x+\Delta x)+1)^2}$

Question 28

- a) $f(x) = \frac{1}{x}$, $dom(f) = \mathbb{R} \setminus \{0\}$.
- b) f(x) = 1 x, $dom(f) = \mathbb{R}$
- c) y pas une fonction de x car $y = \pm \sqrt{1 - x^2}$ peut prendre deux valeurs différentes.
- d) En isolant, on trouve : $y = \pm \sqrt{1 x}$, ce qui ne définit pas une fonction.
- e) En isolant, on trouve : $y = 1 x^2$, ce qui définit une fonction dont le domaine est \mathbb{R} .
- f) f(x) = -x, $dom(f) = \mathbb{R}$
- g) $f(x) = 2x^2 3x + 8$, $dom(f) = \mathbb{R}$.
- h) $f(x) = x^2$, $dom(f) = \mathbb{R} \setminus \{0\}$

- a) 27
- b) 1
- c) 27
- d) $\sqrt{2}$
- e) 2
- f) $(1+h)^2 = 1 + 2h + h^2$
- g) $(3 + \Delta x)^3 = 27 + 27\Delta x +$ $9\Delta x^2 + \Delta x^3$
- h) $\sqrt{y^2 + 1}$
- i) $\frac{1}{y+\Delta x}$
- j) 1
- k) $(x + \Delta x)^{5/2}$
- 1) 0
- m) 1/2
- n) Non défini (division par zéro).
- o) 1
- p) $(x + \Delta x) 1$
- $q) \quad \frac{1}{(x+\Delta x)^2} 1$
- r) $((x + \Delta x) + 1)^2 (x + \Delta x)$

Question 30

$$\frac{3^3 - 2^3}{3 - 2} = 27 - 8 = 19$$

Question 31

$$\frac{(2+\Delta x)^2 - 2^2}{(2+\Delta x) - 2} = \frac{4\Delta x + \Delta x^2}{\Delta x}$$

Ouestion 32

- a) 6x 5
- f) $4x^2$
- b) 6x 10
- c) $2x + \frac{1}{x+1}$
- h) $\frac{1}{4x^2+1}$
- d) $2x^3$
- e) $2x^2$
- i) $\frac{1}{(2x+1)^2}$

- a) y = -x + 2
- b) $f(1) = 1^3 4(1) = -3$
- c) y = -3x 6

Question 34

- a) Ne croise pas l'axe des y, $x = \pm 2$
- b) $y = 3, x = 3\sqrt{3}$
- c) y = 2, x = -1 ou 4
- d) y = -16, x = -2 ou 2
- e) y = 27, x = -3

Question 35

a)

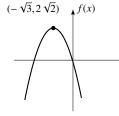
b)

c)

d)

e)

f) Ne croise pas l'axe des y, x = -1/2



f)

g)

h)

(-1, -1)

a) $f(g(x)) = 2(\frac{x}{2} + \frac{3}{2}) - 3 = x$

b) f et g sont des fonctions

c) f et g sont des fonctions

tions inverses.

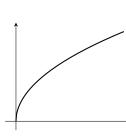
inverses

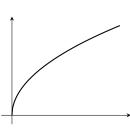
inverses

et $g(f(x)) = \frac{2x-3}{2} + \frac{3}{2} = x$,

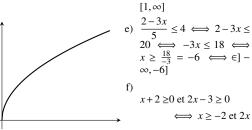
donc f et g sont des fonc-

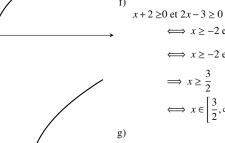
Question 36

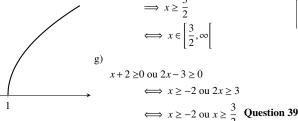




f(x)







Question 38

 $x \in]-\infty,2]$

 $[-1, \infty[$

a) $x-2 \le 5 \iff x \le 2 \iff$

b) $1 \le 2x + 3 \iff -2 \le$

 $(x c) x + 2 < 0 \iff x <$

 $-2 \iff x \in]-\infty, -2[$

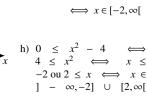
d) $-x + 1 \le 0 \iff -x \le$

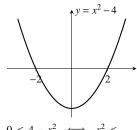
 $-1 \iff x \ge 1 \iff x \in$

 $\iff x \ge -2 \text{ et } 2x \ge 3$

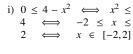
 $\iff x \ge -2 \text{ et } x \ge \frac{3}{2}$

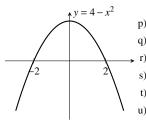
 $2x \iff -1 \le x \iff x \in$



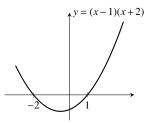


 $\implies x \ge -2$

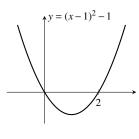




j) $0 \le (x-1)(x+2) \iff$ $x \le -2 \text{ ou } 1 \le x \iff$ $x \in]-\infty,-2] \cap [1,\infty[$



 $k) \ 0 \le (x-1)^2 - 1 \iff$ $x \le 0 \text{ et } 2 \le x \iff$ $x \in]-\infty,0] \cup [2,\infty[$



- - a) $dom(f) = \mathbb{R}$
 - b) dom $(f) = \mathbb{R} \setminus \{3/2\}$ c) dom $(f) = \mathbb{R} \setminus \{3, -2\}$
 - d) $dom(f) = \mathbb{R} \setminus \{-5/2\}$
 - e) dom $(f) = \mathbb{R} \setminus \{-4, 4\}$
 - f) $dom(f) = \mathbb{R} \setminus \{4\}$
 - g) dom $(f) = \mathbb{R} \setminus \{2, -1\}$

 - h) dom $(f) = [1, \infty[$
 - i) $dom(f) = [5/2, \infty[$
 - j) $dom(f) = [0, \infty[$
 - k) $dom(f) = [1, \infty[$
 - 1) $dom(f) =] \infty, -1] \cup$ [1,∞[
 - m) dom(f) = [-1, 1]
 - n) dom $(f) = \mathbb{R}$
 - o) dom $(f) =] \infty, -1] \cup$ [3,∞[
 - p) $dom(f) = \mathbb{R}$
 - q) dom $(f) = \mathbb{R} \setminus \{0\}$
 - r) $dom(f) = \mathbb{R}$
 - s) $dom(f) = \mathbb{R} \setminus \{1\}$
 - t) dom $(f) = \mathbb{R} \setminus \{-1, 1\}$
 - u) dom $(f) =]-\infty, -1[\cup]5, \infty[$

Question 33

Question 37

- a) Faux.
- b) Faux, car $\sqrt{x-2}$ est toujours positif quand défini. La condition est plutôt que $0 \le x - 2$.