Résumé Python

Table des matieres
1 Commentaires

2 Types
2.1 Conversion de type

3 Entrée-sortie

3.1 Print e e e e e
32 Input. . ..o e
3.3 Fichiers e e

4 Chaines de caracteres

4.1 Sélectionde sous-chaines o Lo ool
4.2 Trouver une séquence dansune chaine
4.3 Chaines formatées (f-String) o . e e e e
43.1 Chainedecaracteres o oo
4.3.2 Nombres entiers v vt
4.3.3 Nombres avirgule flotante
434 Signesdesnombres
4.3.5 Affichage d’expressions évaluées

5 Variables

5.1 Nomdevariables e e e
5.1.1 Listelesmots réservés
5.2 Assignation L e e e e e e e e e e e
5.2.1 Notessur’assignation
5.3 Raccourcis pour assignations fréquentes

6 Expressions arithmétiques
7 Blocs
8 Fonctions

9 Opérations booléennes et comparaisons
9.1 Opérations logiques L
9.2 Opérateurs de comparaisons

10 Structures conditionnelles

11 Listes et énumérations
11.1 Indexation o e e e e e e
11.2 Listes de listes et tableaux
11.3 Générer des listes

12 Dictionnaires

W W

[o)WNe NNV, RNV, RLV RTINS Y AW W W

N

3

|

O O o0 X

13

14

15

16

17

18

19

20

21

Tuples

Boucles
14.1 Boucles limitées (for) e
14.2 Boucles conditionnelles (while)

Bibliotheques
Bibliotheque math
Biblohteque scipy
Bibliothéeque random

Bibliotheque numpy
19.1 Fonctions mathématiques Lo
19.2 Tableaux
19.2.1 Application de fonctions a toutes les valeurs d’un tableau
19.3 Modification de tableaux a une dimension
19.3.1 Création de tableau a une dimension avec valeurs constantes
19.3.2 Intervalles subdivisés
19.3.3 Analyse de tableau
19.3.4 Manipulationde tableaux
19.4 Tableau multidimensionnels
19.4.1 Création de tableau a plusieurs dimensions avec valeurs constantes
19.5 Analysededonnées Lo L e
19.6 Courbes polynomialesde tendance
19.7 Modifications de tableaux multidimensionnels
19.8 Charger des données a partir d’un fichier
19.8.1 Ecrire des données dans un fichiercsv
19.9 Courbedefonctions
19.10Nuage de point (scatter)
19.10.1 Types de lignes et points
19.11Affichage etexportation L L oL e
19.12Dimensions du graphique
19.12.1 Titre et 1égendes
19.13 Ajouter des droites a un graphique

Débuggage et efficacité
20.1 Commandes spécialesde Jupyter oo oo
20.2 Débuggerpdbo

Messages d’erreur fréquents
21.1 Parenthése manquante

21.2 Variablenondéfinie oo o L oL
21.3 Probleme d’indentation e
21.4 Probleme de types — opération non valide

10
10
10

11

11

11

12

12
12
12
12
12
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
14
15

15
15
15

Résumé Python

21.5 Confondre’="et’==" e e
21.6 Division par zEro oL e e e e e e

Résumé Python

1 Commentaires

Tout ce qui suit # sur une ligne est un commentaire

Tout ce qui est entre des triples guillemets """ un commentaire

2 + 4 # Ceci est une addition
6

Un long commentaire
sur plusieurs lignes
2+3 ne sera pas exécuté !

2 Types

Les types de base sont

str Chaine de caracteres : "une chaine" ou "une chaine’.
int Nombres entiers

float Nombres a virgule flottante : 3.14

bool Valeurs True et False

list Listes d’items : [3,1,4]

tuple Listes immuable d’items : (3,1,4)

dict Dictionnaire {"A":3,"B":1,"C":4]}

Nonetype Le type de la valeur None.

Certaines bibliotheques définissent de nouveaux types.

type (expression) Retourne le type d’une expression

2.1 Conversion de type
On peut convertir d’un type a un autre quand cela a un sens.

int (A)
float (A)
str(h)
list(A)

>>> list(Bonjour)
[IBI’ |0|, 'Il', |j|’ |0|’ '11', 'I"]

>>> float(5)

>>> int ("42")
42

>>> float("42.5")
42.5

3 Entrée-sortie

3.1 Print

print(A, B, C, ...) imprime les chaines A, B, C, etc.

>>> print("Ceci est un exemple")
Ceci est un exemple

>>> print("Ceci", 10, sqrt(4), "Exemple")
Ceci 10 2 Exemple

La commande print termine une ligne par un retour de chariot. Pour changer le dernier caractere écrit
par la commande print, on utilise le parametre end.

>>> for compteur in range(4):

. print (compteur,end=", ")
0, 1, 2, 3,
3.2 Input

input (Invite) demande d’enter quelque chose en affichant la chaine de caractére Invite. Le mes-
sage d’invite peut étre laissé vide ou étre une chaine formatée.

input ("Quel est votre nom 7")

Note : le résultat est toujours de type srt, donc une chaine de caracteres. Si nécessaire, on peut le
convertir la chaine entrée en entier avec int et en nombre a virgule avec float.

int (input()) Demande un nombre entier
float (input()) Demande un nombre nombre a virgule

Résum

é Python

3.3 Fichiers

On ouvre un fichier avec A=open (NOM, OPTIONS). Le fichier est assigné a variable A qui est utilisée
par la suite pour référer au fichier ouvert. Pour économiser les ressources du systeme, on doit fermer
le fichier quand il n’est plus utilisé avec A.close ().

Les options d’ouverture sont les suivantes :

’r
‘w

’a

’x

A=
A
A.

> Ouvrir en lecture (Read). C’est I’option par défaut de la commande open.
> Ouvre en écriture (Write). Le contenu du fichier ouvert est remplacé.

> Ouvre en écriture . Si le fichier existe déja, le nouveau contenu sera ajouté (Append) au
contenu existant.

> Ouvre un nouveau fichier en écriture . Si le fichier existe déja, on obtient une erreur.
open (NOM, OPTIONS) Ouvre le fichier NOM en lecture et 1’assigne a variable A

.read() Retourne une chaine correspondant au contenu du fichier A
readline() Retourne une chaine correspondant a la ligne actuelle du fichier A et

passe a la ligne suivante.

.readlines() Retourne une liste de chaines, un item par ligne du fichier A.

.write (CHAINE) Ecrit la chaine CHAINE dans le fichier A.

.close() Ferme le fichier A

4 Chaines de caracteres

Une chaine de caractere doit étre délimitée par " " ou ' '.

"Cec
'cec

i est un phrase"
i est une phrase'

Les caracteres ne pouvant étre entrés directement, comme " et ', doivent étre précédés par \.

\n Pour une nouvelle line
\\ Pour les barres obliques inverse \
\" Pour les guillemets doubles
\’> Pour les guillemets simples
>>> print("Gullemets \" et backslash \\")

Gull

suit

>>> print ("Retour de chariot:\nsuite de la phrase")
Retour de chariot:

emets " et backslash \

e de la phrase

le
CH
CH

n (CHAINE) Retourne le nombre de caracteres (la longueur) de CHAINE
AINE.upper () Transforme toute les lettres de CHAINE en majuscules
AINE.lower() Transforme toute les lettres de CHAINE en minuscuscules

4.1 Sélection de sous-chaines

On sélectionne une sous-chaine en utilisant
de sous-listes.

les crochets. Cette opération fonctionne que la sélection

>>> phrase="Ceci est une phrase"
>>> phrase[:4]

Ceci

>>> phrase[4:]

' est une phrase'

>>> phrase[5:8]

'est'

>>> phrase[-6:]

'phrase’

N

4.2 Trouver une séquence dans une chaine

SOUS-CHAINE in CHAINE

CHAINE. find (SOUS-CHAINE)

CHAINE.find (SOUS-CHAINE,n,m)

Teste si la chaine SOUS-CHAINE est présente dans la
chaine CHAINE ; retourne une valeur booléenne.

Retourne I’index de la premiére occurence de SOUS-
CHAINE dans la chaine CHAINE ou -1 s’il n’y en a pas.
Retourne I’index de la premiére occurence de SOUS-
CHAINE dans la chaine CHAINE entre les indices n et
m;ou-1s’iln’y en a pas.

>>> chaine="Bonjour Yannick !"
>>> "Yannick" in chaine

True

>>> "Sophie" in chaine

False

>>> chaine.find("Yannick")

8

>>> chaine.find("Sophie")

-1

Résumé Python

4.3 Chaines formatées (f-string)

Une chaine peut étre une f-string (ou chaine formatée). La chaine doit étre précédée d’un caractere

"t

Le format général d’une f-string est le suivant : £ CHAINE. La CHAINE de caractere, les expressions de

la forme { } sont remplacées en les évaluant et formatant le résultat selon une spécification précise.

La forme générale d’une expresion entre accolades dans une f-string est la suivante :
{INSTRUCTIONS: REMPLISSAGE ALIGNEMENT LARGEUR PRECISION TYPE}

Les INSTRUCTIONS peuvent étre n’importe quelle expression python dont le résultat d’évaluation

peut étre affiché.

REMPLISSAGE : Caractere a utiliser pour remplir la chaine de caractere pour qu’elle ait la LAR-

GEUR voulue.

ALIGNEMENT :
< adroite;
> agauche;

centré.

LARGEUR : nombre de caractéres a occuper

PRECISION : précision de I’affichage des nombres décimaux ou nombre de caractéres d’une chaine
a afficher

TYPE :

Virgule flottante

Notation scientifique si grand nombre
Notation scientifique

Nombre entier

Nombre entier affiché en binaire

Lo 2 < T < I > I)

Nombre entier affiché en hexadécimal
% Pourcentage

4.3.1 Chaine de caracteres

Sinom = "Python", alors

Exemple sortie Remplacement

Remplissage

Alignement

Largeur

{nom:>20%}

{nom:<20}

{nom:~20}
{nom:*>20}

! Python'
'Python !
! Python !
kokkokkkkkkkkkkxPython !

>
<

>

20
20
20
20

>>> nom = "Yannick"

>>> print(f"Le nom est |{nom:>10}|")
Le nom est | Yannick|

>>> print(f"Le nom est |{nom:<10}|")
Le nom est |Yannick |

>>> print(f"Le nom est |{nom:~10}|")
Le nom est | Yannick |

4.3.2 Nombres entiers

Sinombre = 1325, alors

Exemple sortie Remplacement

Remplissage

Largeur

Alignement

2

'00001325" {nombre:08d} 0
! 1325 {nombre:8d4}

'1325%x*k ! {nombre: *<8d} *
'10100101101' {nombre:b}

'52D"' {nombre:X}

4.3.3 Nombres a virgule flotante

8
8
8

Pour arrondr avec des chiffres significatifs, utiliser la précision et £.

Sinombre = 3.14159265357989, alors
Exemple sortie Remplacement

Larg.

Align.

Précision

><r:rm.r:u.cu_g

Type

'3.1416' {nombre: .5}
'3.14159"' {nombre: .5f}

! 3.142! {nombre:8.3f}
'3.14E+00"' {nombre: .2E}
'3.14! {nombre: .3G}
'5.19E+49" {nombre**100: .3G}
'25.67%' {.2567:.2%}

5

D W W N W W

QQm=- -

Résumé Python

4.3.4 Signes des nombres

+ signe + ou - toujours présent .

(Espace) signe + sont remplacés par des espaces, signes - sont affichés.

Exemple sortie Remplacement Larg. Align. Précision Type
1-231' {-231:d} d
'231" {231: d} d
'-231" {-231: 4} d
'+231"' {231:+d} d
'-231"' {-231:+4} d
' +231! { 231:+64} 6 d
! 231" { 231: 64} 6 d
' =231 {-231:+64} 6 d
'-231 ! {-231:<+6d} 6 < d
'+3.14" {3.14159:+.2f} 2 f
'-3.14" {-3.14159:+.2f} 2 f
' 3.14" {3.14159: .2f} 2 f
'-3.14" {-3.14159: .2f} 2 f

4.3.5 Affichage d’expressions évaluées

Un type de remplacement est utile pour afficher des expressions de la forme x = 3.1415. Toute ex-
pression dans une spécification de remplacement suivie de = sera remplacée par elle-méme, suivie de
’=" et de la valeur de I’expression. Il est aussi possible de formater la valeur de I’expression.

Six =

3.1415etnom =

"Python", alors

Exemple sortie Remplacement Larg. Align. Précision Type
'x = 3.1415' {x =}

'x=3.1415" {x=}

"nom = 'Python'" {nom =}

'xx*2 = 9.8690225' {x**2 = }

'x**2 = 9.869' {x*x*2 = :.3f} 3 f
'x*¥%2 = 9.869E+00' {x**2 = :.3E } 3 E
'Xkk2 = 9.869' {x*x2 = :>8.3f} 8 > 3 f
"nom = 'Python'" {nom = }

'nom = Python' {nom = :}

'nom = Python ' {nom = :<10} 10 <

5 Variables

5.1 Nom de variables

Les noms peuvent étre aussi longs que 1I’on veut (mais on évite habituellement les noms trop long,
car ils sont difficiles a lire).

Les noms peuvent contenir des chiffres, des lettres majuscules et minuscules, mais doivent tou-
jours débuter par une lettre.

Les noms ne peuvent contenir d’espace, mais on peut utiliser le caractere « _ » (souligné).

Les noms ne peuvent pas étre des mots réservés, comme les noms des commandes pythons. Iy a
35 mots réservés qui ne peuvent pas étre utilisés comme nom de variable.

5.1.1 Liste les mots réservés

False None True and as assert async await break class continue
def del elif else except finally for from global if import in is
lambda nonlocal not or pass raise return try while with yield

5.2 Assignation

var=EXPRESSION Evalue EXPRESSION et assigne le résultat 2 la variable var.

del VARIABLE détruire une variable (et ainsi libérer I’espace utilisé par son contenu)

5.2.1 Notes sur ’assignation

L’expression est évaluée avant d’étre assignée a la variable.

On peut changer la valeur assignée a une variable plusieurs fois.

On veut assigner des valeurs de n’importe quel type a une variable.

>>> variablel = 2

>>> variable2 = 3

>>> variablel+variable2

5

>>> variablel = "Bonjour"
>>> variable2 = "Yannick"
>>> variablel+variable2
'BonjourYannick'

Résumé Python

5.3 Raccourcis pour assignations fréquentes

x+=1 x=x+I
x-=1 x=x-1
x*=2 X=2Xx
x/=2 x=x/2
x//=2 x=x/I2

>>> x=2

>>> x+=1
>>> print(x)
3

6 Expressions arithmétiques

La priorité des opérations est respectée et les parenthéses peuvent étre utilisées.

A+B Somme

A-B Différence

AxB Produit

A/B Division

AxxB Puissance AB

pow(A,B) Puissance A8

A//B Division entiere de A par B.

A%B A modulo B (reste de division de A par B).
abs(A) Valeur absolue de A.

round (A) Entier le plus proche de A.

round(A,n) Arrondissement de A a n chiffres apres le point décimal.

sum(A1,A3,A3) Somme des éléments d’une énumération, comme une liste
min(A1,A2,A3 Minimum des arguments
max (A1,A2,A3) Maximum des arguments

>>> x=2

>>> y=3.5

>>> print (2**3-y)
4.5

>>> print(11//3)

3

>>> print(11/3)
3.6666666666666665
>>> sum([2,3,1])

6

>>> round(3.14159265357989,4)
3.1416

7 Blocs

Un bloc d’instructions est partie d’'un programme qui débute par :, suivie par des lignes intentées et
se termine quand 1’indentation revient au niveau initial. Un bloc est similaire a une expression entre
parenthese : c’est une partie d’un programme qui est considéré comme un tout.

Dans le code suivant, il y a un bloc constitué des lignes 2,3 et 4.

1 def f(x):

2 a = x**2

3 b = atx

4 return at+b

Comme les parentheses, les blocs peuvent étre imbriqués, c’est a dire qu’il peut y avoir des blocs
a l'intérieur d’autres blocs. Dans le code suivant, il y a deux blocs imbriqués : un bloc associé a la
commande while allant de la ligne 5 a la ligne 9 et un bloc associé a la commande if constitué des
lignes 7 et 8.

r

1a=20

2 b =1

3 while a < 10:

4 a = at+l

5 if a3 == 0:

6 print(a)

7 b=>b +1

8 print(a,b)

- v

8 Fonctions

Forme de la définition d’une fonction

def Nom(ARGUMENTS) :
COMMANDES

[return EXPRESSION]

>>> def succ(n):
return n+1

On peut spécifier les types attendus en entrée et en sortie, ce qui peut prévenir certaines erreurs

>>> def divisionO(x:float,y:float) -> float:
if y!=0:
return x/y
else:
return 0O

Résumé Python

9 Opérations booléennes et comparaisons

9.1 Opérations logiques

A and B AetB
AorB AouB
not A non-A

9.2 Opérateurs de comparaisons

Les opérateurs de comparaisons retournent toujours une valeur booléenne True ou False.

x ==y xestégalay?

x !=y xestdifférentde y?

x <y xeststrictement plus petit que y ?
x <=y xestpluspetitouégalay?

X >y Xxeststrictement plus grand que y?
x >= y xestplus grand ouégalay?

x is y idx)=id(y)?

x in y xestunélémentdey?

10 Structures conditionnelles

Exécution d’un bloc de commande si une certaine condition est satisfaite. CONDITION doit retourner
une valeurs booléenne True ou False.

if CONDITION:
BLOC 1

[elif condition2:
BLOC 2]

[else:
BLOC 3]

11 Listes et énumérations

Une liste est une collection ordonnées d’éléments. Ces éléments peuvent étre de type différents. On
entre les listes en mettant ses éléments entre crochets, séparés par des virgules.

Une liste : [1,2,3,4,23,"Blah"]
La liste vide : []

11.1 Indexation

Si A est une liste ou un objet énumérable, on peut référer au n-ieme item de I’énumération avec
A[n+1].

L’indexation en python commence toujours a 0. A [n] est donc le n + 1-ieme élément d’une liste A
Si n est négatif, on compte a partir de la fin. A[-1] est donc le dernier élément.

A[m:n] estla liste des éléments de la liste A du m-ieéme au n + 1-iéme

Si m est laissé vide, I’énumération débute au début de la liste

Si n est laissé vide, I’énumération se termine a la fin de la liste

Alm:n:k] est la liste des éléments de la liste A du m-ieme au n + 1-ieéme par sauts de grandeur k
(appelé le pas).

>>> A:[Ial lbl |CI Idl lel Ifl]
>>> A[2]
ICI

>>> A[1:3]
[Ibl’ lcl]

>>> A[2:]
[Icl’ ldl’ lel’ lfl]
>>> A[:2]
[lal’ lbl]

>>> A[-3]
lbl

Pour énumérer une liste en ordre inverse, on peut utiliser un pas négatif.

>>> A:[Ial lbl 'C' |d| |e| 'f']

>>> A[::-1]

[Ifl, Iel’ ldl’ lcl’ lbl’ la|]
len(L) Donne la longueur de la liste L.
L1+L2 Donne une nouvelle liste en ajoutant L2 a la fin de L1
k*L1 Donne une nouvelle liste constituée de k copies de L1

L.append (A)
L.insert(n,A)

Ajoute I’élément A a la fin de la liste L.
Ajoute I’élément A a la liste L pour que sont indice soit 7.

Résumé Python

L.pop(Q) Retourne et retire le denier élément de la liste L.
L.pop(n) Retourne et retire 1’élément d’indice n de la liste L.
range (n) liste des entiers de 0 a n.

range(m,n) liste des entiers k tels que m < k < n.

range(m,n,d) liste des entiers k tels que m < k < n par sauts de d.

map (F,L) Applique la fonction F' a chacun des éléments de la liste L.
L.count (A) Donne le nombre d’occurrences de 1’é1ément A dans la liste L.
L.sort() Met la liste L en ordre croissant ou alphabétique.
L.sort(reverse=True) Met la liste L en ordre décroissant ou alphabétique.
sorted(L) Retourne une copie en ordre croissant de la liste L.
sorted(L,reverse=True) Retourne une copie en ordre décroissant de la liste L.
L.copy() Retourne une copie de la liste L.

L.deepcopy () Retourne une copie d’un tableau imbriqué L.

11.2 Listes de listes et tableaux

Une liste peut contenir d’autres listes.

>>> A=[[0],[1,2],[3,4,5],[6,7,8,9]]
>>> A[2][1] # Liste no 2, entrée no 1
4

est possible de faire des « listes de listes de listes » de cette maniére avec autant de niveaux que ’on
veut.

Un tableau n x m est une liste de n listes de m éléments.

On sélectionnes des entrées particulieres comme avec les listes.

>>> A=[[0,1,2,3],[4,5,6,71,[8,9,10,11]] # Un tableau 3x4
>>> A[1][2] # Ligne no 1, colonne no 2
6

11.3 Générer des listes

La commande range créé des énumérations. On peut convertir ces énumérations en lites avec la com-
mande liste.

>>> list(range(2,6))

[5, 6, 7, 8, 9]
>>> list(range(0,10,2))
o, 2, 4, 6, 8]

1

12

Un dictionnaire est une structure de donnée (type dict) associant des clefs artibraires a des valeurs.
Syntaxe : { CLEF1: VALEUR1, CLEF2: VALEUR2, ...}

Il peut y avoir autant d’association que 1’on veut. Les clefs doivent étre des chaines de caracteres ou
des nombres et les valeurs peuvent étre de n’importe quel type.

Dictionnaires

>>> Population_parc={"Tigre": 4, "Lion": 6, "Eléphant": 25, "Zebre":33}
>>> Population_parc["Lion"]

6

>>> Population_parc["Lion"]=5

>>> Population_parc["Lion"]

5

D.keys() Retourne un énumérateur des clefs du dictionnaire D.
D.copy ()

D.pop (CLEF)

Retourne une copie du dictionnaire D (avec un id différent)
Retourne la valeur de Dictionnaire [CLEF] et retire cette valeur du dictionnaire D

On peut énumérer les clefs d’un dictionnaire pour une boucle for comme avec une liste.

>>> for Animal in Population_parc:
print (Animal)

Tigre

Lion

Eléphant

Zebre

>>> for Animal in Population_parc:
print (f"{Animal}: {Population_parc[Animal]}")

Tigre: 4
Lion: 6
Eléphant: 25
Zebre: 33

13 Tuples

Les tuples sont des objets Python similaires aux listes, mais donc les items ne peuvent pas étre mo-
difiés. En conséquence, les fonctions append(),pop(), insert() et sort() ne peuvent pas étre
utilisées avec des tuples.

>>> Tuple = (3,1,2)
>>> Liste [3,1,2]
>>> Tuple[0]

3

>>> Liste[0]

3

Résumé Python

10

>>> Tuple[0] = 5

TypeError: 'tuple' object does not support item assignment
>>> Liste[0] = 5

>>> Liste

[5, 1, 2]

14 Boucles

14.1 Boucles limitées (for)

Une boucle for répete un bloc d’instruction en donnant a une variable toutes les valeurs possibles
d’un numérateur. Le nombre de répétition du bloc est déterminé par le nombre de valeurs possibles
dans I’énumération.
for VARIABLE in ENUMERATION:
BLOC

La commande range construit des énumérations de nombres entiers.

>>> for compteur in range(3,9):
print (compteur)

0 ~N O O W

ut aussi énumé Elé une liste, u 1 e un’i u jet qu
On peut aussi énumérer les éléments d’une liste, une chaine de caractéres ou n’importe quel objet que
python consideére comme "énumérable”.

>>> for nom in ["Yannick","Marcella","Dim","Cath"]:
. print (nom)

Yannick
Marcella
Dim

Cath

14.2 Boucles conditionnelles (while)

La commande while permet de répéter d’exécution d’un bloc d’instructions tant qu’une condition est
satisfaite. Cette condition doit retourner une valeur booléenne True ou False.

while CONDITION:
BLOC
Note Il est possible que la condition d’une boucle while soit toujours satisfaite. Dans ce cas le bloc
d’instruction est répété a I’infini.

On utilise souvent les boucles while avec des variables auxiliaires comme des compteurs.

>>> compteur = 3

. while compteur <=9:
compteur += 1
print (compteur)

© 00 N O U1 -

Résumé Python 11

15 Bibliothéques math.lcm Plus petit commun multiple des arguments
math.comb(n,k) Combinaisons de k dans n

Pour importer une bibliotheque comme la bibliotheque math : math.perm(n, k) Permutations de k dans 7
math.prod Produit des éléments d’une liste

import math
math.factorial(n) Factorielle n!

Pour importer une bibliotheque comme la bibliothéque math mais en lui donnant un autre nom :

’ 17 Biblohteque scipy

import math as ma

Cette bibliotheque contient des définitions de plusieurs constantes utiles en science. Toutes les
constantes sont données en unités SI.

16 Bibliothéque math Apres import scipy.constants as cst
. . ., . N . cst.g Accélération gravitationnele g
Commandes mathématiques qui nécessitent de charger la bibliotheque math : import math o
cst.G Constante gravitationnele G
>>> import math cst.Avogadro Nombre d’Avogadro Ny
>>> math.cos(math.pi) cst.c Vitesse de la lumiere dans le vide ¢
-1.0 cst.e Charge élémentaire e
cst.m_p Masse du proton m,,
Constantes mathématiques cst.m_e Masse de I’électron m,
cst.m_n Masse du neutron m,,
math.pi Constante 7 = 3.14159265357989... L
cst.mu_0 Constante magnétique L

math.e Constante e = 2.718281.... . . .
. . . cst.epsilon_0 Constante électrique &)
math.inf Constante « infinie » oo

cst.h Constante de Planck &
math.nan Constante « pas un nombre » (Not a number)
Fonctions mathématiques. Quelques constantes utiles pour les conversions d’unités.
Six:float,n: int, alors cst.astronomical_unit Unité astronomique en métres
math.sqrt (x) Racine carrée /x cst.calorie Une calorie en Joules
math. cbrt (x) Racine cubique /x cst.eV Un électron-Volt en Joules
math. exp (x) Exponentielle ¢* cst.minute une minute en secondes
math.log(x) Logarithme In(x) cst.hour une heure en secondes
math.log(x,b) Logarithme base b : log,, (x) cst.day un jour en secondes
math.exp2(x) Puissance de 2 : 2* cst.year une année en secondes
math.log2(x) Logarithme a base 2 : log, (x) (plus précis que math.log(x,2)).
math.degree(x) Conversion rads — degrés
math.radians(x) Conversion degrés — rads
math.sin(x) Sinus : sin(x)
math.cos(x) Cosinus : cos(x)
math.tan(x) Tangente : tan(x)
math.acos (x) Arcsinus : arccos(x)
math.asin(x) Arccosinus : arcsin(x)
math.atan(x) Arctangente : arctan(x)
math.floor Partie entiere
math.ceil (x) Plus petit entier plus grand que 1’argument

math.gcd Plus grand commun diviseur des arguments

Résumé Python

12

18 Bibliotheque random

Cette bibliotheque contient des foncions permettant de générer des nombres et des séquences
(pseudo)aléatoire.

Charger cette bibliotheque avec import random

random.random() Génere un nombre décimal aléatoire entre O et 1.

random.uniform(A,B) Génere un nombre décimal aléatoire entre A et B.
Génere un nombre entier aléatoire entre les entiers A et
B.

Génere un nombre décimal aléatoire selon une distribu-
tion normale de moyenne mu et d’écart type sigma.

random.randint (A,B)
random.normavariate (mu,sigma)

Génere un élément aléatoire de la liste L.
Génere une liste de NB_CHOIX éléments aléatoires ti-
rées avec remise de la liste L.

Génere une liste de NB_CHOIX éléments aléatoires ti-
rées sans remise de la liste L.

random. choice (L)

random. choice (L,k=NB_CHOIX)
random. sample (L ,k=NB_CHOIX)
random. shuffle (L,k=NB_CHOIX) Génere une liste de NB_CHOIX éléments aléatoires ti-
rées sans remise de la liste L.

random.seed (A) Regle de germe du générateur de nombre aléatoire a la
valeur A.

>>> # Génére un nombre aléatoire dans 1'intervalle [0,100]
>>> import random

>>> 100*random.random()

94.80261695959705

>>> liste = ["Bonjour", "Allo", "Salut"]
>>> print(random.choice(liste))

Allo

>>> print(random.choice(liste))

Salut

19 Bibliotheque numpy

Commandes mathématiques qui nécessitent de charger la librairie numpy : import numpy as np

19.1 Fonctions mathématiques

Les fonctions et constantes de la bibliotheque math sont aussi définies dans la bibliotheque numpy.

19.2 Tableaux

Un tableau rectangulaire de données numériques est un objet défini dans la bibliotheque numpy appelé
array.

Un tableau unidimensionnel de longueur 5 :

>>> A = np.array([[1,2,3,4,5])
print(4)
[1,2,3,4,5]

Un tableau multidimensionnel 2 x 3 :

>>> A = np.array([[1,2,3],[4,5,6]])
>>> print(A)

[[1 23]

[5 6 711

19.2.1 Application de fonctions a toutes les valeurs d’un tableau

On peut appliquer une fonction simultanément a toutes les entrée d’un tableau.

>>> A = np.array([1,2,3,4,5])
>>> print (A**2)
[1 4 9 16 25]

19.3 Modification de tableaux a une dimension

Retourne un nouveau tableau ot on ajoute la valeur val a la fin du
tableau 7.

Retourne un nouveau tableau ol on ajoute la valeur val a la posi-
tion pos du tableau 7.

np.append(T,val)
np.insert(T,val,pos)

np.column_stack((x,y)) Créé un tableau a prenant les tableaux unidimensionnels x et y

comme colonnes.

Note : il est préférable d’utiliser la version d’append des listes en convertir en tableau numpy si né-
cessaire, car la version liste est plus efficace pour ajouter un élément.

Résumé Python

13

19.3.1 Création de tableau a une dimension avec valeurs constantes

np.empty(dimentions) Création d’un tableau vide dont les dimentions sont dimentions.
np.full(n,valeur)

np.full_like(A,valeur)

Créé un array de longueur n ou toutes les entrées sont valeur.
Créé un array de méme dimension que A ou toutes les entrées
sont valeur.

np.zeros(n) Créé un array de longueur n ou toutes les entrées sont 0 (z€ro).
np.zeros_like(A) Créé un array de méme dimensions que A ou toutes les entrées
sont 0 (z€ro).

19.3.2 Intervalles subdivisés

np.linspace(a,b,n) Liste de n points séparant I’intervalle [a,b] en n— 1 intervalles égaux

np.arange(a,b,delta) Liste de points séparant I'intervalle [a,b] en intervalles égaux de

largeur delta.

19.3.3 Analyse de tableau

A.prod() Retourne la somme des entrées du tableau A.
A.sum() Retourne la somme des entrées du tableau A.
np.sum(A) Retourne la somme des entrées du tableau A.
A.prod() Retourne le produit des entrées du tableau A.
np.prod(A) Retourne le produit des entrées du tableau A.
A .mean() Retourne la moyenne des entrées du tableau A.
A.std() Retourne I’écart type des entrées du tableau A.
A.max () Retourne la plus grande valeur du tableau A.
A.min() Retourne la plus petite valeur du tableau A.
19.3.4 Manipulation de tableaux

np.sort(A) Retourne une copie triée du tableau A.
A.sort() Trie le tableau A.
A.£f1ip() Inverse I’ordre du tableau A.

np.append (4,x) Ajoute x a la fin du tableau A.
np.insert(A,x,n)

np.delete(A,n)

Ajoute x a la position n du tableau A.
Enléve I’entrée du tableau A a la position n.

19.4 Tableau multidimensionnels

Un tableau numpy peut avoir plusieurs dimensions. On créé de tels tableaux avec les listes imbriquées.
Par exemple, un tableau 2 x 3 :

>>> A = np.array([[1,2,3],[4,5,611)
>>> print(A)

[[1 2 3]

[4 5 6]]

19.4.1 Création de tableau a plusieurs dimensions avec valeurs constantes

np.empty(dimentions) Création d’un tableau vide dont les dimensions sont dimensions.

np.zeros((n,m)) Créé un array n x m ou toutes les entrées sont 0 (zéro).
np.ones((n,m)) Créé un array n x m ou toutes les entrées sont 0 (zéro).
np.full((n,m),valeur) Créé un array nx m ou toutes les entrées sont valeur.
np.zeros_like(A) Créé un array de méme dimensions que A ou toutes les entrées

sont 0 (zéro).

19.5 Analyse de données

On peut utiliser ces commandes par ligne ou par colonnes avec I’argument optionnel axis. Dans ce

cas, le résultat est un array des résultats. Lignes = axis=0, Colonnes = axis=1.

np.sum(A,axis=0) Sommes par ligne
A. sum(axis=1) Sommes par colonnes
A .mean(axis=0) Moyenne par linges
A .mean(axis=1) Moyenne par colonnes

etc.

Remarque : on peut utiliser I’'une ou I’autre forme des commandes données.

19.6 Courbes polynomiales de tendance

np.polyfit(A,B,d) Retourne la liste des coefficients du polyndme de degré d qui
s’ajuste le mieux aux données des tableaux A (en x) et B (en y).

np.polyld(Liste_coef) Retourne la fonction définie par le polyndme dont les coefficients
sont dans la liste Liste_coef. Une telle liste est retournée par

polyfit.

Pour définir la fonction polynomiale de degré 1 décrivant le mieux les valeur de B en fonction de A :

coefs=np.polyfit(A,B,1)
f=np.polyld(coef)

Résumé Python

14

19.7 Modifications de tableaux multidimensionnels

On utilise les commandes de base append, insert et delete sur les tableau multidimensionnels en spé-
cifiant si elles doivent s’exécuter sur des ligne ou des colonnes avec le paramétre axis.

np.append(A,vals,axis=0) Ajoute la ligne vals au tableau A.

np.insert(A,vals,pos,axis=1) Ajoute la colonne vals au tableau A a la position pos.
np.delete(A,pos,axis=1) Enléve la colonne pos du tableau 7.

19.8 Charger des données a partir d’un fichier

Si le contenu du fichier données. csv est le suivant :

S W N
o O W
=W N

alors la commande loadtxt de la biliotheque numpy permet de les charger dans un array numpy.

>>> import numpy as np

>>> données = np.loadtxt("données.csv",delimiter=",")
>>> print (données)

[[1. 3.4]

[2. 4.2]

[3. 5.3]

(4. 6.11]

\.

Calcul de la moyenne, de I’écart type et de la médiane de la 2¢ colonne des données

>>>
>>>
2.5
>>> colonne.std()
1.118033988749895

>>> np.median(colonne)
2.5

colonne = données[:,0] # Sélectionne la 2e colonne
colonne.mean ()

19.8.1 Ecrire des données dans un fichier csv

La commande np . savetxt permet de sauver les données d’un tableau dans un fichier csv.

>>> import numpy as np
>>> données = np.array([[1,2,3,4,5],[3.4,2.3,4.5,5.3,6.2]1]).T
>>> np.savetxt("données2.csv",données,delimiter=",")

Librarie matplotlib

On charge la bibliotheque mathplotlib avec import mathplotlib.pyplot as plt.

On construit le graphique a I’aide de commande en spécifiant le contenu et on I’affiche ensuite avec
show () ou on sauve le graphique dans un fichier avec savefig().

19.9 Courbe de fonctions
19.10 Nuage de point (scatter)

plt.scatter(X,Y) ou X et Y sont des array de données.

>>> import mathplotlib.pyplot as plt
>>> plt.title("Titre du graphique")

>>> X = array([1,2,3,4,5,6])

>>> Y = array([1.2,1.9,3.2,4.3,5.0,6.2])
>>> plt.scatter(X,Y)

>>> plt.xlabel=("x")

>>> plt.xlabel=("y")

>>> plt.show()

19.10.1 Types de lignes et points

- Ligne pleine

- Ligne a tirets
Petits points

o Gros points

-. Ligne avec points et tirets
Ligne pointilée

+ Signe «+»

19.11 Affichage et exportation
19.12 Dimensions du graphique

plt.xlim(xmin,xmax)
plt.ylim(ymin, ymax)
plt.grid(bool)

Change les limites du graphique pour le limiter a2 xmin < x < xmax
Change les limites du graphique pour le limiter a ymin <y < ymax
Si bool est True, ajoute un grille au graphique.

19.12.1 Titre et légendes

plt.title(titre)
plt.xlabel(chaine)

Ajoute la chaine titre comme titre du graphique

Utilise la chaine de caractere chaine comme étiquette sous 1’axe des
abscisses.

plt.ylabel(chaine) Utilise la chaine de caractére chaine comme étiquette pour 1’axe des

ordonnées.

plt.show() Affiche le graphique actuel et le remet a zéro.

Résumé Python

15

plt.savefig("NOM_FICHIER.EXT") Exporte le graphique dans le fichier nommé
"NOM_FICHIER.EXT" dans le format associé a I’ex-
tension EXT. Les formats suivants sont supportés :
png, pdf et svg. (D’autres formats peuvent &tre sup-

portés selon les plateformes).

19.13 Ajouter des droites a un graphique
plt.axline((x1,y1),(x2,y2) Ajoute une ligne infinie passant par les points (x1,y1) et
(x2,y2)
plt.axline((x1,y1),slope=m Ajoute une ligne infinie passant par le point (x1,y1) et de
pente m.
plt.axhline(C) Ajout d’une ligne infinie horizontale d’équation y = C.
plt.axvline Ajout d’une ligne infinie verticale d’équation x = C.

20 Débuggage et efficacité

20.1 Commandes spéciales de Jupyter

On peut mettre sur la premiere ligne d’une cellule d’une feuille de calcul jupyter certaines commandes
spéciales permettant d’étudier le fonctionnement d’un programme.

%pdb on Active le lancement automatique de pdb en cas d’erreur.

%pdb off Désactive le lancement automatique de pdb en cas d’erreur.

%debug Lance le débugger s’il y a un message d’erreur auparavant. A utiliser apres I’erreur,
dans une nouvelle cellule.

%time Exécute en déterminant le temps d’exécution

%timeit Exécute le programme plusieurs fois et calcule la moyenne et I"écart type du temps

d’exécution.

20.2 Débugger pdb

Le débugger interne de Python est pdb. Dans ce mode, I’interpréteur Python attend avant d’exécuter
chaque instruction et permet d’examiner le contenu des variables, ce qui peut aider & déterminer la
cause d’un probleme.

Les commandes de pdb les plus utiles sont les suivantes.
h Aide ((Help).
Exécute la prochaine instruction
Exécute la prochaine instruction en entant dans la fonction
Continuer jusqu’au prochain breakpoint.
Continuer jusqu’a la prochaine instruction return.
Affiche la la valeur de la variable VAR.
Afficher les lignes de code autour de la ligne actuelle

VAR

Afficher les arguments de la fonction actuelle

Q P H" R o on B

Quitter le débugger.

21 Messages d’erreur fréquents

21.1 Parenthese manquante

Correctif général : ajouter la parenthése manquante.

>>>3%2+5)
SyntaxError: unmatched ')'

Correction : 3% (2+5)

>>> 5x(2+3

SyntaxError: '(' was never closed

Corretion : 5% (2+3)

>>> math.sin(0
SyntaxError: '(' was never closed

Corretion : math.sin(0)

21.2 Variable non définie

Utilisation d’une variable qui n’a pas encore de valeur définie

>>> print(x)

NameError: name 'x' is not defined

>>> x = 3
>>> print(x)
3

21.3 Probléme d’indentation

Indentation de trop

>>> x = 3
>>> print(x)
IndentationError: unexpected indent

Correctif :
>>> x = 3
>>> print(x)
3

Résumé Python

16

Indentation manquante

>>> if condition:
. print(x)
IndentationError: expected an indented block after 'if' statement on line 1

Correctif :

>>> if x ==
print("x=1")

21.6 Division par zéro

I1'y a un division par zéro lors de I’exécution du programme

>>> if condition:
. print(x)
IndentationError: expected an indented block after 'if' statement on line 1

>>> x = 2
>>> y = 1/(x**2-4)
ZeroDivisionError: division by zero

>>> def f(x):
y=x+1
. return y
SyntaxError: invalid syntax

Correctif :

>>> def f(x):
y=x+1
return y

21.4 Probleme de types — opération non valide

On tente de faire une opération qui n’a pas de sens.

>>> "Bonjour" + 2
TypeError: can only concatenate str (mot "int") to str

.

Correctif : s’assurer que les types des entrée de 1’opération sont adéquats :

>>> "Bonjour" + str(2)
'Bonjour2'

21.5 Confondre ’=’ et ’=="

Convusion entre assignation ’=" et comparaison == :

>>> if x = 1:
. print("condition satisfaite")
SyntaxError: invalid syntax. Maybe you meant '==' or ':=' instead of '='7?

Correctif :

