
Résumé Python
Table des matières
1 Commentaires 3

2 Types 3
2.1 Conversion de type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Entrée-sortie 3
3.1 Print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.3 Fichiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Chaines de caractères 4
4.1 Sélection de sous-chaines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2 Trouver une séquence dans une chaine . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.3 Chaines formatées (f-string) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.3.1 Chaine de caractères . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.3.2 Nombres entiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.3.3 Nombres à virgule flotante . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.3.4 Signes des nombres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.3.5 Affichage d’expressions évaluées . . . . . . . . . . . . . . . . . . . . . . . 6

5 Variables 6
5.1 Nom de variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5.1.1 Liste les mots réservés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.2 Assignation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5.2.1 Notes sur l’assignation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.3 Raccourcis pour assignations fréquentes . . . . . . . . . . . . . . . . . . . . . . . . 7

6 Expressions arithmétiques 7

7 Blocs 7

8 Fonctions 7

9 Opérations booléennes et comparaisons 8
9.1 Opérations logiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
9.2 Opérateurs de comparaisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

10 Structures conditionnelles 8

11 Listes et énumérations 8
11.1 Indexation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
11.2 Listes de listes et tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
11.3 Générer des listes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

12 Dictionnaires 9

13 Tuples 9

14 Boucles 10
14.1 Boucles limitées (for) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
14.2 Boucles conditionnelles (while) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

15 Bibliothèques 11

16 Bibliothèque math 11

17 Biblohtèque scipy 11

18 Bibliothèque random 12

19 Bibliothèque numpy 12
19.1 Fonctions mathématiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
19.2 Tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

19.2.1 Application de fonctions à toutes les valeurs d’un tableau . . . . . . . . . . . 12
19.3 Modification de tableaux à une dimension . . . . . . . . . . . . . . . . . . . . . . . 12

19.3.1 Création de tableau à une dimension avec valeurs constantes . . . . . . . . . 13
19.3.2 Intervalles subdivisés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
19.3.3 Analyse de tableau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
19.3.4 Manipulation de tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

19.4 Tableau multidimensionnels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
19.4.1 Création de tableau à plusieurs dimensions avec valeurs constantes . . . . . . 13

19.5 Analyse de données . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
19.6 Courbes polynomiales de tendance . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
19.7 Modifications de tableaux multidimensionnels . . . . . . . . . . . . . . . . . . . . . 14
19.8 Charger des données à partir d’un fichier . . . . . . . . . . . . . . . . . . . . . . . . 14

19.8.1 Écrire des données dans un fichier csv . . . . . . . . . . . . . . . . . . . . . 14
19.9 Courbe de fonctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
19.10Nuage de point (scatter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

19.10.1 Types de lignes et points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
19.11Affichage et exportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
19.12Dimensions du graphique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

19.12.1 Titre et légendes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
19.13Ajouter des droites à un graphique . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

20 Débuggage et efficacité 15
20.1 Commandes spéciales de Jupyter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
20.2 Débugger pdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

21 Messages d’erreur fréquents 15
21.1 Parenthèse manquante . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
21.2 Variable non définie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
21.3 Problème d’indentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
21.4 Problème de types – opération non valide . . . . . . . . . . . . . . . . . . . . . . . 16



Résumé Python 2

21.5 Confondre ’=’ et ’==’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
21.6 Division par zéro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



Résumé Python 3

1 Commentaires
Tout ce qui suit # sur une ligne est un commentaire

Tout ce qui est entre des triples guillemets """ un commentaire

2 + 4 # Ceci est une addition
6

"""
Un long commentaire
sur plusieurs lignes
2+3 ne sera pas exécuté !
"""

2 Types
Les types de base sont

str Chaine de caractères : "une chaine" ou ’une chaine’.
int Nombres entiers
float Nombres à virgule flottante : 3.14
bool Valeurs True et False
list Listes d’items : [3,1,4]
tuple Listes immuable d’items : (3,1,4)
dict Dictionnaire {"A":3,"B":1,"C":4]}
Nonetype Le type de la valeur None.

Certaines bibliothèques définissent de nouveaux types.

type(expression) Retourne le type d’une expression

2.1 Conversion de type
On peut convertir d’un type à un autre quand cela a un sens.

int(A)
float(A)
str(A)
list(A)

>>> list(Bonjour)
['B', 'o', 'n', 'j', 'o', 'u', 'r']

>>> float(5)

>>> int("42")
42

>>> float("42.5")
42.5

3 Entrée-sortie
3.1 Print
print(A, B, C, ...) imprime les chaines A, B, C, etc.

>>> print("Ceci est un exemple")
Ceci est un exemple

>>> print("Ceci", 10, sqrt(4), "Exemple")
Ceci 10 2 Exemple

La commande print termine une ligne par un retour de chariot. Pour changer le dernier caractère écrit
par la commande print, on utilise le paramètre end.

>>> for compteur in range(4):
... print(compteur,end=", ")
0, 1, 2, 3,

3.2 Input
input(Invite) demande d’enter quelque chose en affichant la chaîne de caractère Invite. Le mes-
sage d’invite peut être laissé vide ou être une chaine formatée.

input("Quel est votre nom ?")

Note : le résultat est toujours de type srt, donc une chaine de caractères. Si nécessaire, on peut le
convertir la chaine entrée en entier avec int et en nombre à virgule avec float.

int(input()) Demande un nombre entier
float(input()) Demande un nombre nombre à virgule



Résumé Python 4

3.3 Fichiers
On ouvre un fichier avec A=open(NOM,OPTIONS). Le fichier est assigné à variable A qui est utilisée
par la suite pour référer au fichier ouvert. Pour économiser les ressources du système, on doit fermer
le fichier quand il n’est plus utilisé avec A.close().
Les options d’ouverture sont les suivantes :

’r’ Ouvrir en lecture (Read). C’est l’option par défaut de la commande open.
’w’ Ouvre en écriture (Write). Le contenu du fichier ouvert est remplacé.
’a’ Ouvre en écriture . Si le fichier existe déjà, le nouveau contenu sera ajouté (Append) au

contenu existant.
’x’ Ouvre un nouveau fichier en écriture . Si le fichier existe déjà, on obtient une erreur.

A=open(NOM,OPTIONS) Ouvre le fichier NOM en lecture et l’assigne à variable A
A.read() Retourne une chaine correspondant au contenu du fichier A
A.readline() Retourne une chaine correspondant à la ligne actuelle du fichier A et

passe à la ligne suivante.
A.readlines() Retourne une liste de chaines, un item par ligne du fichier A.
A.write(CHAINE) Écrit la chaine CHAINE dans le fichier A.
A.close() Ferme le fichier A

4 Chaines de caractères
Une chaine de caractère doit être délimitée par " " ou ' '.

"Ceci est un phrase"
'ceci est une phrase'

Les caractères ne pouvant être entrés directement, comme " et ', doivent être précédés par \.

\n Pour une nouvelle line
\\ Pour les barres obliques inverse \
\" Pour les guillemets doubles
\’ Pour les guillemets simples

>>> print("Gullemets \" et backslash \\")
Gullemets " et backslash \

>>> print("Retour de chariot:\nsuite de la phrase")
Retour de chariot:
suite de la phrase

len(CHAINE) Retourne le nombre de caractères (la longueur) de CHAINE
CHAINE.upper() Transforme toute les lettres de CHAINE en majuscules
CHAINE.lower() Transforme toute les lettres de CHAINE en minuscuscules

4.1 Sélection de sous-chaines
On sélectionne une sous-chaîne en utilisant les crochets. Cette opération fonctionne que la sélection
de sous-listes.

>>> phrase="Ceci est une phrase"
>>> phrase[:4]
Ceci
>>> phrase[4:]
' est une phrase'
>>> phrase[5:8]
'est'
>>> phrase[-6:]
'phrase'

4.2 Trouver une séquence dans une chaine
SOUS-CHAINE in CHAINE Teste si la chaine SOUS-CHAINE est présente dans la

chaine CHAINE; retourne une valeur booléenne.
CHAINE.find(SOUS-CHAINE) Retourne l’index de la première occurence de SOUS-

CHAINE dans la chaine CHAINE ou -1 s’il n’y en a pas.
CHAINE.find(SOUS-CHAINE,n,m) Retourne l’index de la première occurence de SOUS-

CHAINE dans la chaine CHAINE entre les indices n et
m ; ou -1 s’il n’y en a pas.

>>> chaine="Bonjour Yannick !"
>>> "Yannick" in chaine
True
>>> "Sophie" in chaine
False
>>> chaine.find("Yannick")
8
>>> chaine.find("Sophie")
-1



Résumé Python 5

4.3 Chaines formatées (f-string)
Une chaine peut être une f-string (ou chaine formatée). La chaine doit être précédée d’un caractère
"f".
Le format général d’une f-string est le suivant : fCHAINE. La CHAINE de caractère, les expressions de
la forme { } sont remplacées en les évaluant et formatant le résultat selon une spécification précise.
La forme générale d’une expresion entre accolades dans une f-string est la suivante :

{INSTRUCTIONS: REMPLISSAGE ALIGNEMENT LARGEUR PRÉCISION TYPE}
Les INSTRUCTIONS peuvent être n’importe quelle expression python dont le résultat d’évaluation
peut être affiché.
REMPLISSAGE : Caractère à utiliser pour remplir la chaine de caractère pour qu’elle ait la LAR-
GEUR voulue.
ALIGNEMENT :

< à droite ;
> à gauche ;
ˆ centré.

LARGEUR : nombre de caractères à occuper
PRÉCISION : précision de l’affichage des nombres décimaux ou nombre de caractères d’une chaine
à afficher
TYPE :

f Virgule flottante
G Notation scientifique si grand nombre
E Notation scientifique
d Nombre entier
b Nombre entier affiché en binaire
X Nombre entier affiché en hexadécimal
% Pourcentage

4.3.1 Chaine de caractères

Si nom = "Python", alors
Exemple sortie Remplacement Remplissage Alignement Largeur

' Python' {nom:>20} > 20
'Python ' {nom:<20} < 20
' Python ' {nom:^20} ^ 20
'**************Python' {nom:*>20} * > 20

>>> nom = "Yannick"
>>> print(f"Le nom est |{nom:>10}|")
Le nom est | Yannick|
>>> print(f"Le nom est |{nom:<10}|")
Le nom est |Yannick |
>>> print(f"Le nom est |{nom:^10}|")
Le nom est | Yannick |

4.3.2 Nombres entiers

Si nombre = 1325, alors
Exemple sortie Remplacement Remplissage Largeur Alignement Type
'00001325' {nombre:08d} 0 8 d
' 1325' {nombre:8d} 8 d
'1325****' {nombre:*<8d} * 8 < d
'10100101101' {nombre:b} b
'52D' {nombre:X} X

4.3.3 Nombres à virgule flotante

Pour arrondr avec des chiffres significatifs, utiliser la précision et f.
Si nombre = 3.14159265357989, alors

Exemple sortie Remplacement Larg. Align. Précision Type
'3.1416' {nombre:.5} 5
'3.14159' {nombre:.5f} 5 f
' 3.142' {nombre:8.3f} 8 3 f
'3.14E+00' {nombre:.2E} 2 E
'3.14' {nombre:.3G} 3 G
'5.19E+49' {nombre**100:.3G} 3 G
'25.67%' {.2567:.2%} 2 %



Résumé Python 6

4.3.4 Signes des nombres

+ signe + ou - toujours présent .
(Espace) signe + sont remplacés par des espaces, signes - sont affichés.

Exemple sortie Remplacement Larg. Align. Précision Type
'-231' {-231:d} d
'231' {231: d} d
'-231' {-231: d} d
'+231' {231:+d} d
'-231' {-231:+d} d
' +231' { 231:+6d} 6 d
' 231' { 231: 6d} 6 d
' -231' {-231:+6d} 6 d
'-231 ' {-231:<+6d} 6 < d
'+3.14' {3.14159:+.2f} 2 f
'-3.14' {-3.14159:+.2f} 2 f
' 3.14' {3.14159: .2f} 2 f
'-3.14' {-3.14159: .2f} 2 f

4.3.5 Affichage d’expressions évaluées

Un type de remplacement est utile pour afficher des expressions de la forme x = 3.1415. Toute ex-
pression dans une spécification de remplacement suivie de = sera remplacée par elle-même, suivie de
’=’ et de la valeur de l’expression. Il est aussi possible de formater la valeur de l’expression.
Si x = 3.1415 et nom = "Python", alors

Exemple sortie Remplacement Larg. Align. Précision Type
'x = 3.1415' {x =}
'x=3.1415' {x=}
"nom = 'Python'" {nom =}
'x**2 = 9.8690225' {x**2 = }
'x**2 = 9.869' {x**2 = :.3f} 3 f
'x**2 = 9.869E+00' {x**2 = :.3E } 3 E
'x**2 = 9.869' {x**2 = :>8.3f} 8 > 3 f
"nom = 'Python'" {nom = }
'nom = Python' {nom = :}
'nom = Python ' {nom = :<10} 10 <

5 Variables
5.1 Nom de variables
• Les noms peuvent être aussi longs que l’on veut (mais on évite habituellement les noms trop long,

car ils sont difficiles à lire).
• Les noms peuvent contenir des chiffres, des lettres majuscules et minuscules, mais doivent tou-

jours débuter par une lettre.
• Les noms ne peuvent contenir d’espace, mais on peut utiliser le caractère « _ » (souligné).
• Les noms ne peuvent pas être des mots réservés, comme les noms des commandes pythons. Il y a

35 mots réservés qui ne peuvent pas être utilisés comme nom de variable.

5.1.1 Liste les mots réservés

False None True and as assert async await break class continue
def del elif else except finally for from global if import in is
lambda nonlocal not or pass raise return try while with yield

5.2 Assignation
var=EXPRESSION Évalue EXPRESSION et assigne le résultat à la variable var.
del VARIABLE détruire une variable (et ainsi libérer l’espace utilisé par son contenu)

5.2.1 Notes sur l’assignation

L’expression est évaluée avant d’être assignée à la variable.
On peut changer la valeur assignée à une variable plusieurs fois.
On veut assigner des valeurs de n’importe quel type à une variable.

>>> variable1 = 2
>>> variable2 = 3
>>> variable1+variable2
5

>>> variable1 = "Bonjour"
>>> variable2 = "Yannick"
>>> variable1+variable2
'BonjourYannick'



Résumé Python 7

5.3 Raccourcis pour assignations fréquentes
x+=1 x=x+1
x-=1 x=x-1
x*=2 x=2x
x/=2 x=x/2
x//=2 x=x//2

>>> x=2
>>> x+=1
>>> print(x)
3

6 Expressions arithmétiques
La priorité des opérations est respectée et les parenthèses peuvent être utilisées.

A+B Somme
A-B Différence
A*B Produit
A/B Division
A**B Puissance AB

pow(A,B) Puissance AB

A//B Division entière de A par B.
A%B A modulo B (reste de division de A par B).
abs(A) Valeur absolue de A.
round(A) Entier le plus proche de A.
round(A,n) Arrondissement de A à n chiffres après le point décimal.
sum(A1,A3,A3) Somme des éléments d’une énumération, comme une liste
min(A1,A2,A3 Minimum des arguments
max(A1,A2,A3) Maximum des arguments

>>> x=2
>>> y=3.5
>>> print(2**3-y)
4.5
>>> print(11//3)
3
>>> print(11/3)
3.6666666666666665
>>> sum([2,3,1])
6
>>> round(3.14159265357989,4)
3.1416

7 Blocs
Un bloc d’instructions est partie d’un programme qui débute par :, suivie par des lignes intentées et
se termine quand l’indentation revient au niveau initial. Un bloc est similaire à une expression entre
parenthèse : c’est une partie d’un programme qui est considéré comme un tout.
Dans le code suivant, il y a un bloc constitué des lignes 2,3 et 4.

1 def f(x):
2 a = x**2
3 b = a+x
4 return a+b

Comme les parenthèses, les blocs peuvent être imbriqués, c’est à dire qu’il peut y avoir des blocs
à l’intérieur d’autres blocs. Dans le code suivant, il y a deux blocs imbriqués : un bloc associé à la
commande while allant de la ligne 5 à la ligne 9 et un bloc associé à la commande if constitué des
lignes 7 et 8.

1 a = 0
2 b = 1
3 while a < 10:
4 a = a+1
5 if a%3 == 0:
6 print(a)
7 b = b +1
8 print(a,b)

8 Fonctions
Forme de la définition d’une fonction

def Nom(ARGUMENTS):
COMMANDES
...
[return EXPRESSION]

>>> def succ(n):
return n+1

On peut spécifier les types attendus en entrée et en sortie, ce qui peut prévenir certaines erreurs

>>> def division0(x:float,y:float) -> float:
if y!=0:

return x/y
else:

return 0



Résumé Python 8

9 Opérations booléennes et comparaisons
9.1 Opérations logiques

A and B A et B
A or B A ou B
not A non-A

9.2 Opérateurs de comparaisons
Les opérateurs de comparaisons retournent toujours une valeur booléenne True ou False.

x == y x est égal à y ?
x != y x est différent de y ?
x < y x est strictement plus petit que y ?
x <= y x est plus petit ou égal à y ?
x > y x est strictement plus grand que y ?
x >= y x est plus grand ou égal à y?
x is y id(x)=id(y) ?
x in y x est un élément de y?

10 Structures conditionnelles
Exécution d’un bloc de commande si une certaine condition est satisfaite. CONDITION doit retourner
une valeurs booléenne True ou False.

if CONDITION:
BLOC 1

[elif condition2:
BLOC 2]

[else:
BLOC 3]

11 Listes et énumérations
Une liste est une collection ordonnées d’éléments. Ces éléments peuvent être de type différents. On
entre les listes en mettant ses éléments entre crochets, séparés par des virgules.
Une liste : [1,2,3,4,23,"Blah"]
La liste vide : []

11.1 Indexation
Si A est une liste ou un objet énumérable, on peut référer au n-ième item de l’énumération avec
A[n+1].
L’indexation en python commence toujours à 0. A[n] est donc le n+1-ième élément d’une liste A
Si n est négatif, on compte à partir de la fin. A[-1] est donc le dernier élément.
A[m:n] est la liste des éléments de la liste A du m-ième au n+1-ième
Si m est laissé vide, l’énumération débute au début de la liste
Si n est laissé vide, l’énumération se termine à la fin de la liste
A[m:n:k] est la liste des éléments de la liste A du m-ième au n+ 1-ième par sauts de grandeur k
(appelé le pas).

>>> A=['a','b','c','d','e','f']
>>> A[2]
'c'

>>> A[1:3]
['b', 'c']

>>> A[2:]
['c', 'd', 'e', 'f']

>>> A[:2]
['a', 'b']

>>> A[-3]
'b'

Pour énumérer une liste en ordre inverse, on peut utiliser un pas négatif.

>>> A=['a','b','c','d','e','f']
>>> A[::-1]
['f', 'e', 'd', 'c', 'b', 'a']

len(L) Donne la longueur de la liste L.
L1+L2 Donne une nouvelle liste en ajoutant L2 à la fin de L1
k*L1 Donne une nouvelle liste constituée de k copies de L1
L.append(A) Ajoute l’élément A à la fin de la liste L.
L.insert(n,A) Ajoute l’élément A à la liste L pour que sont indice soit n.



Résumé Python 9

L.pop() Retourne et retire le denier élément de la liste L.
L.pop(n) Retourne et retire l’élément d’indice n de la liste L.
range(n) liste des entiers de 0 à n.
range(m,n) liste des entiers k tels que m ≤ k < n.
range(m,n,d) liste des entiers k tels que m ≤ k < n par sauts de d.
map(F,L) Applique la fonction F à chacun des éléments de la liste L.
L.count(A) Donne le nombre d’occurrences de l’élément A dans la liste L.
L.sort() Met la liste L en ordre croissant ou alphabétique.
L.sort(reverse=True) Met la liste L en ordre décroissant ou alphabétique.
sorted(L) Retourne une copie en ordre croissant de la liste L.
sorted(L,reverse=True) Retourne une copie en ordre décroissant de la liste L.
L.copy() Retourne une copie de la liste L.
L.deepcopy() Retourne une copie d’un tableau imbriqué L.

11.2 Listes de listes et tableaux
Une liste peut contenir d’autres listes.

>>> A=[[0],[1,2],[3,4,5],[6,7,8,9]]
>>> A[2][1] # Liste no 2, entrée no 1
4

Il
est possible de faire des « listes de listes de listes » de cette manière avec autant de niveaux que l’on
veut.
Un tableau n×m est une liste de n listes de m éléments.
On sélectionnes des entrées particulières comme avec les listes.

>>> A=[[0,1,2,3],[4,5,6,7],[8,9,10,11]] # Un tableau 3x4
>>> A[1][2] # Ligne no 1, colonne no 2
6

11.3 Générer des listes
La commande range créé des énumérations. On peut convertir ces énumérations en lites avec la com-
mande liste.

>>> list(range(2,6))
[5, 6, 7, 8, 9]
>>> list(range(0,10,2))
[0, 2, 4, 6, 8]

12 Dictionnaires
Un dictionnaire est une structure de donnée (type dict) associant des clefs artibraires à des valeurs.
Syntaxe : { CLEF1: VALEUR1, CLEF2: VALEUR2, ...}
Il peut y avoir autant d’association que l’on veut. Les clefs doivent être des chaines de caractères ou
des nombres et les valeurs peuvent être de n’importe quel type.

>>> Population_parc={"Tigre": 4, "Lion": 6, "Éléphant": 25, "Zebre":33}
>>> Population_parc["Lion"]
6
>>> Population_parc["Lion"]=5
>>> Population_parc["Lion"]
5

D.keys() Retourne un énumérateur des clefs du dictionnaire D.
D.copy() Retourne une copie du dictionnaire D (avec un id différent)

D.pop(CLEF) Retourne la valeur de Dictionnaire[CLEF] et retire cette valeur du dictionnaire D

On peut énumérer les clefs d’un dictionnaire pour une boucle for comme avec une liste.

>>> for Animal in Population_parc:
... print(Animal)
...
Tigre
Lion
Éléphant
Zebre
>>> for Animal in Population_parc:
... print(f"{Animal}: {Population_parc[Animal]}")
...
Tigre: 4
Lion: 6
Éléphant: 25
Zebre: 33

13 Tuples
Les tuples sont des objets Python similaires aux listes, mais donc les items ne peuvent pas être mo-
difiés. En conséquence, les fonctions append(),pop(), insert() et sort() ne peuvent pas être
utilisées avec des tuples.

>>> Tuple = (3,1,2)
>>> Liste = [3,1,2]
>>> Tuple[0]
3
>>> Liste[0]
3



Résumé Python 10

>>> Tuple[0] = 5
TypeError: 'tuple' object does not support item assignment
>>> Liste[0] = 5
>>> Liste
[5, 1, 2]

14 Boucles
14.1 Boucles limitées (for)
Une boucle for répète un bloc d’instruction en donnant à une variable toutes les valeurs possibles
d’un numérateur. Le nombre de répétition du bloc est déterminé par le nombre de valeurs possibles
dans l’énumération.

for VARIABLE in ENUMÉRATION:
BLOC

La commande range construit des énumérations de nombres entiers.

>>> for compteur in range(3,9):
... print(compteur)
3
4
5
6
7
8

On peut aussi énumérer les éléments d’une liste, une chaîne de caractères ou n’importe quel objet que
python considère comme "énumérable".

>>> for nom in ["Yannick","Marcella","Dim","Cath"]:
... print(nom)
Yannick
Marcella
Dim
Cath

14.2 Boucles conditionnelles (while)
La commande while permet de répéter d’exécution d’un bloc d’instructions tant qu’une condition est
satisfaite. Cette condition doit retourner une valeur booléenne True ou False.

while CONDITION:
BLOC

Note Il est possible que la condition d’une boucle while soit toujours satisfaite. Dans ce cas le bloc
d’instruction est répété à l’infini.
On utilise souvent les boucles while avec des variables auxiliaires comme des compteurs.

>>> compteur = 3
... while compteur <=9:
... compteur += 1
... print(compteur)
4
5
6
7
8
9
10



Résumé Python 11

15 Bibliothèques
Pour importer une bibliothèque comme la bibliothèque math :

import math

Pour importer une bibliothèque comme la bibliothèque math mais en lui donnant un autre nom :

import math as ma

16 Bibliothèque math
Commandes mathématiques qui nécessitent de charger la bibliothèque math : import math

>>> import math
>>> math.cos(math.pi)
-1.0

Constantes mathématiques
math.pi Constante π = 3.14159265357989 . . .
math.e Constante e = 2.718281 . . .
math.inf Constante « infinie » ∞

math.nan Constante « pas un nombre » (Not a number)

Fonctions mathématiques.
Si x : float, n : int, alors

math.sqrt(x) Racine carrée
√

x
math.cbrt(x) Racine cubique 3

√
x

math.exp(x) Exponentielle ex

math.log(x) Logarithme ln(x)
math.log(x,b) Logarithme à base b : logb(x)
math.exp2(x) Puissance de 2 : 2x

math.log2(x) Logarithme à base 2 : log2(x) (plus précis que math.log(x,2)).
math.degree(x) Conversion rads → degrés
math.radians(x) Conversion degrés → rads
math.sin(x) Sinus : sin(x)
math.cos(x) Cosinus : cos(x)
math.tan(x) Tangente : tan(x)
math.acos(x) Arcsinus : arccos(x)
math.asin(x) Arccosinus : arcsin(x)
math.atan(x) Arctangente : arctan(x)
math.floor Partie entière
math.ceil(x) Plus petit entier plus grand que l’argument
math.gcd Plus grand commun diviseur des arguments

math.lcm Plus petit commun multiple des arguments
math.comb(n,k) Combinaisons de k dans n
math.perm(n,k) Permutations de k dans n
math.prod Produit des éléments d’une liste
math.factorial(n) Factorielle n!

17 Biblohtèque scipy
Cette bibliothèque contient des définitions de plusieurs constantes utiles en science. Toutes les
constantes sont données en unités SI.
Après import scipy.constants as cst

cst.g Accélération gravitationnele g
cst.G Constante gravitationnele G
cst.Avogadro Nombre d’Avogadro NA

cst.c Vitesse de la lumière dans le vide c
cst.e Charge élémentaire e
cst.m_p Masse du proton mp

cst.m_e Masse de l’électron me

cst.m_n Masse du neutron mn

cst.mu_0 Constante magnétique µ0

cst.epsilon_0 Constante électrique ε0

cst.h Constante de Planck h

Quelques constantes utiles pour les conversions d’unités.

cst.astronomical_unit Unité astronomique en mètres
cst.calorie Une calorie en Joules
cst.eV Un électron-Volt en Joules
cst.minute une minute en secondes
cst.hour une heure en secondes
cst.day un jour en secondes
cst.year une année en secondes



Résumé Python 12

18 Bibliothèque random
Cette bibliothèque contient des foncions permettant de générer des nombres et des séquences
(pseudo)aléatoire.
Charger cette bibliothèque avec import random

random.random() Génère un nombre décimal aléatoire entre 0 et 1.
random.uniform(A,B) Génère un nombre décimal aléatoire entre A et B.
random.randint(A,B) Génère un nombre entier aléatoire entre les entiers A et

B.
random.normavariate(mu,sigma) Génère un nombre décimal aléatoire selon une distribu-

tion normale de moyenne mu et d’écart type sigma.
random.choice(L) Génère un élément aléatoire de la liste L.
random.choice(L,k=NB_CHOIX) Génère une liste de NB_CHOIX éléments aléatoires ti-

rées avec remise de la liste L.
random.sample(L,k=NB_CHOIX) Génère une liste de NB_CHOIX éléments aléatoires ti-

rées sans remise de la liste L.
random.shuffle(L,k=NB_CHOIX) Génère une liste de NB_CHOIX éléments aléatoires ti-

rées sans remise de la liste L.
random.seed(A) Règle de germe du générateur de nombre aléatoire à la

valeur A.

>>> # Génère un nombre aléatoire dans l'intervalle [0,100]
>>> import random
>>> 100*random.random()
94.80261695959705

>>> liste = ["Bonjour", "Allo", "Salut"]
>>> print(random.choice(liste))
Allo
>>> print(random.choice(liste))
Salut

19 Bibliothèque numpy
Commandes mathématiques qui nécessitent de charger la librairie numpy : import numpy as np

19.1 Fonctions mathématiques
Les fonctions et constantes de la bibliothèque math sont aussi définies dans la bibliothèque numpy.

19.2 Tableaux
Un tableau rectangulaire de données numériques est un objet défini dans la bibliothèque numpy appelé
array.
Un tableau unidimensionnel de longueur 5 :

>>> A = np.array([[1,2,3,4,5])
print(A)
[1,2,3,4,5]

Un tableau multidimensionnel 2×3 :

>>> A = np.array([[1,2,3],[4,5,6]])
>>> print(A)
[[1 2 3]
[5 6 7]]

19.2.1 Application de fonctions à toutes les valeurs d’un tableau

On peut appliquer une fonction simultanément à toutes les entrée d’un tableau.

>>> A = np.array([1,2,3,4,5])
>>> print(A**2)
[ 1 4 9 16 25]

19.3 Modification de tableaux à une dimension
np.append(T,val) Retourne un nouveau tableau où on ajoute la valeur val à la fin du

tableau T .
np.insert(T,val,pos) Retourne un nouveau tableau où on ajoute la valeur val à la posi-

tion pos du tableau T .
np.column_stack((x,y)) Créé un tableau à prenant les tableaux unidimensionnels x et y

comme colonnes.

Note : il est préférable d’utiliser la version d’append des listes en convertir en tableau numpy si né-
cessaire, car la version liste est plus efficace pour ajouter un élément.



Résumé Python 13

19.3.1 Création de tableau à une dimension avec valeurs constantes

np.empty(dimentions) Création d’un tableau vide dont les dimentions sont dimentions.
np.full(n,valeur) Créé un array de longueur n où toutes les entrées sont valeur.
np.full_like(A,valeur) Créé un array de même dimension que A où toutes les entrées

sont valeur.
np.zeros(n) Créé un array de longueur n où toutes les entrées sont 0 (zéro).
np.zeros_like(A) Créé un array de même dimensions que A où toutes les entrées

sont 0 (zéro).

19.3.2 Intervalles subdivisés

np.linspace(a,b,n) Liste de n points séparant l’intervalle [a,b] en n−1 intervalles égaux
np.arange(a,b,delta) Liste de points séparant l’intervalle [a,b] en intervalles égaux de

largeur delta.

19.3.3 Analyse de tableau

A.prod() Retourne la somme des entrées du tableau A.
A.sum() Retourne la somme des entrées du tableau A.
np.sum(A) Retourne la somme des entrées du tableau A.
A.prod() Retourne le produit des entrées du tableau A.
np.prod(A) Retourne le produit des entrées du tableau A.
A.mean() Retourne la moyenne des entrées du tableau A.
A.std() Retourne l’écart type des entrées du tableau A.
A.max() Retourne la plus grande valeur du tableau A.
A.min() Retourne la plus petite valeur du tableau A.

19.3.4 Manipulation de tableaux

np.sort(A) Retourne une copie triée du tableau A.
A.sort() Trie le tableau A.
A.flip() Inverse l’ordre du tableau A.
np.append(A,x) Ajoute x à la fin du tableau A.
np.insert(A,x,n) Ajoute x à la position n du tableau A.
np.delete(A,n) Enlève l’entrée du tableau A à la position n.

19.4 Tableau multidimensionnels
Un tableau numpy peut avoir plusieurs dimensions. On créé de tels tableaux avec les listes imbriquées.
Par exemple, un tableau 2×3 :

>>> A = np.array([[1,2,3],[4,5,6]])
>>> print(A)
[[1 2 3]
[4 5 6]]

19.4.1 Création de tableau à plusieurs dimensions avec valeurs constantes

np.empty(dimentions) Création d’un tableau vide dont les dimensions sont dimensions.
np.zeros((n,m)) Créé un array n×m où toutes les entrées sont 0 (zéro).
np.ones((n,m)) Créé un array n×m où toutes les entrées sont 0 (zéro).
np.full((n,m),valeur) Créé un array n×m où toutes les entrées sont valeur.
np.zeros_like(A) Créé un array de même dimensions que A où toutes les entrées

sont 0 (zéro).

19.5 Analyse de données
On peut utiliser ces commandes par ligne ou par colonnes avec l’argument optionnel axis. Dans ce
cas, le résultat est un array des résultats. Lignes = axis=0, Colonnes = axis=1.

np.sum(A,axis=0) Sommes par ligne
A.sum(axis=1) Sommes par colonnes
A.mean(axis=0) Moyenne par linges
A.mean(axis=1) Moyenne par colonnes

etc.

Remarque : on peut utiliser l’une ou l’autre forme des commandes données.

19.6 Courbes polynomiales de tendance
np.polyfit(A,B,d) Retourne la liste des coefficients du polynôme de degré d qui

s’ajuste le mieux aux données des tableaux A (en x) et B (en y).
np.poly1d(Liste_coef) Retourne la fonction définie par le polynôme dont les coefficients

sont dans la liste Liste_coef. Une telle liste est retournée par
polyfit.

Pour définir la fonction polynomiale de degré 1 décrivant le mieux les valeur de B en fonction de A :

coefs=np.polyfit(A,B,1)
f=np.poly1d(coef)



Résumé Python 14

19.7 Modifications de tableaux multidimensionnels
On utilise les commandes de base append, insert et delete sur les tableau multidimensionnels en spé-
cifiant si elles doivent s’exécuter sur des ligne ou des colonnes avec le paramètre axis.

np.append(A,vals,axis=0) Ajoute la ligne vals au tableau A.
np.insert(A,vals,pos,axis=1) Ajoute la colonne vals au tableau A à la position pos.
np.delete(A,pos,axis=1) Enlève la colonne pos du tableau T .

19.8 Charger des données à partir d’un fichier
Si le contenu du fichier données.csv est le suivant :

1, 3.4
2, 4.2
3, 5.3
4, 6.1

alors la commande loadtxt de la biliothèque numpy permet de les charger dans un array numpy.

>>> import numpy as np
>>> données = np.loadtxt("données.csv",delimiter=",")
>>> print(données)
[[1. 3.4]
[2. 4.2]
[3. 5.3]
[4. 6.1]]

Calcul de la moyenne, de l’écart type et de la médiane de la 2e colonne des données

>>> colonne = données[:,0] # Sélectionne la 2e colonne
>>> colonne.mean()
2.5
>>> colonne.std()
1.118033988749895
>>> np.median(colonne)
2.5

19.8.1 Écrire des données dans un fichier csv

La commande np.savetxt permet de sauver les données d’un tableau dans un fichier csv.

>>> import numpy as np
>>> données = np.array([[1,2,3,4,5],[3.4,2.3,4.5,5.3,6.2]]).T
>>> np.savetxt("données2.csv",données,delimiter=",")

Librarie matplotlib
On charge la bibliothèque mathplotlib avec import mathplotlib.pyplot as plt.
On construit le graphique à l’aide de commande en spécifiant le contenu et on l’affiche ensuite avec
show() ou on sauve le graphique dans un fichier avec savefig().

19.9 Courbe de fonctions

19.10 Nuage de point (scatter)
plt.scatter(X,Y) où X et Y sont des array de données.

>>> import mathplotlib.pyplot as plt
>>> plt.title("Titre du graphique")
>>> X = array([1,2,3,4,5,6])
>>> Y = array([1.2,1.9,3.2,4.3,5.0,6.2])
>>> plt.scatter(X,Y)
>>> plt.xlabel=("x")
>>> plt.xlabel=("y")
>>> plt.show()

19.10.1 Types de lignes et points

- Ligne pleine
– Ligne à tirets
. Petits points
o Gros points
-. Ligne avec points et tirets
: Ligne pointilée
+ Signe « + »

19.11 Affichage et exportation

19.12 Dimensions du graphique
plt.xlim(xmin,xmax) Change les limites du graphique pour le limiter à xmin ≤ x ≤ xmax
plt.ylim(ymin,ymax) Change les limites du graphique pour le limiter à ymin ≤ y ≤ ymax
plt.grid(bool) Si bool est True, ajoute un grille au graphique.

19.12.1 Titre et légendes

plt.title(titre) Ajoute la chaine titre comme titre du graphique
plt.xlabel(chaine) Utilise la chaine de caractère chaine comme étiquette sous l’axe des

abscisses.
plt.ylabel(chaine) Utilise la chaine de caractère chaine comme étiquette pour l’axe des

ordonnées.

plt.show() Affiche le graphique actuel et le remet à zéro.



Résumé Python 15

plt.savefig("NOM_FICHIER.EXT") Exporte le graphique dans le fichier nommé
"NOM_FICHIER.EXT" dans le format associé à l’ex-
tension EXT. Les formats suivants sont supportés :
png, pdf et svg. (D’autres formats peuvent être sup-
portés selon les plateformes).

19.13 Ajouter des droites à un graphique
plt.axline((x1,y1),(x2,y2) Ajoute une ligne infinie passant par les points (x1,y1) et

(x2,y2)
plt.axline((x1,y1),slope=m Ajoute une ligne infinie passant par le point (x1,y1) et de

pente m.
plt.axhline(C) Ajout d’une ligne infinie horizontale d’équation y =C.
plt.axvline Ajout d’une ligne infinie verticale d’équation x =C.

20 Débuggage et efficacité
20.1 Commandes spéciales de Jupyter
On peut mettre sur la première ligne d’une cellule d’une feuille de calcul jupyter certaines commandes
spéciales permettant d’étudier le fonctionnement d’un programme.

%pdb on Active le lancement automatique de pdb en cas d’erreur.
%pdb off Désactive le lancement automatique de pdb en cas d’erreur.
%debug Lance le débugger s’il y a un message d’erreur auparavant. À utiliser après l’erreur,

dans une nouvelle cellule.
%time Exécute en déterminant le temps d’exécution
%timeit Éxécute le programme plusieurs fois et calcule la moyenne et l’écart type du temps

d’exécution.

20.2 Débugger pdb
Le débugger interne de Python est pdb. Dans ce mode, l’interpréteur Python attend avant d’exécuter
chaque instruction et permet d’examiner le contenu des variables, ce qui peut aider à déterminer la
cause d’un problème.
Les commandes de pdb les plus utiles sont les suivantes.

h Aide ((Help).
n Exécute la prochaine instruction
s Exécute la prochaine instruction en entant dans la fonction
c Continuer jusqu’au prochain breakpoint.
r Continuer jusqu’à la prochaine instruction return.
p VAR Affiche la la valeur de la variable VAR.
l Afficher les lignes de code autour de la ligne actuelle
a Afficher les arguments de la fonction actuelle
q Quitter le débugger.

21 Messages d’erreur fréquents
21.1 Parenthèse manquante
Correctif général : ajouter la parenthèse manquante.

>>>3*2+5)
SyntaxError: unmatched ')'

Correction : 3*(2+5)

>>> 5*(2+3
SyntaxError: '(' was never closed

Corretion : 5*(2+3)

>>> math.sin(0
SyntaxError: '(' was never closed

Corretion : math.sin(0)

21.2 Variable non définie
Utilisation d’une variable qui n’a pas encore de valeur définie

>>> print(x)
NameError: name 'x' is not defined

>>> x = 3
>>> print(x)
3

21.3 Problème d’indentation
Indentation de trop

>>> x = 3
>>> print(x)
IndentationError: unexpected indent

Correctif :

>>> x = 3
>>> print(x)
3



Résumé Python 16

Indentation manquante

>>> if condition:
... print(x)
IndentationError: expected an indented block after 'if' statement on line 1

Correctif :

>>> if condition:
... print(x)
IndentationError: expected an indented block after 'if' statement on line 1

>>> def f(x):
... y = x + 1
... return y
SyntaxError: invalid syntax

Correctif :

>>> def f(x):
... y = x + 1
... return y

21.4 Problème de types – opération non valide
On tente de faire une opération qui n’a pas de sens.

>>> "Bonjour" + 2
TypeError: can only concatenate str (not "int") to str

Correctif : s’assurer que les types des entrée de l’opération sont adéquats :

>>> "Bonjour" + str(2)
'Bonjour2'

21.5 Confondre ’=’ et ’==’
Convusion entre assignation ’=’ et comparaison ’==’ :

>>> if x = 1:
... print("condition satisfaite")
SyntaxError: invalid syntax. Maybe you meant '==' or ':=' instead of '='?

Correctif :

>>> if x == 1:
... print("x=1")

21.6 Division par zéro
Il y a un division par zéro lors de l’exécution du programme

>>> x = 2
>>> y = 1/(x**2-4)
ZeroDivisionError: division by zero


